时序预测 | Python实现ARIMA-CNN-LSTM差分自回归移动平均模型结合卷积长短期记忆神经网络时间序列预测

时序预测 | Python实现ARIMA-CNN-LSTM差分自回归移动平均模型结合卷积长短期记忆神经网络时间序列预测

目录

    • 时序预测 | Python实现ARIMA-CNN-LSTM差分自回归移动平均模型结合卷积长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

时序预测 | Python实现ARIMA-CNN-LSTM差分自回归移动平均模型结合卷积长短期记忆神经网络时间序列预测
直接替换数据即可用 适合新手小白
附赠案例数据 可直接运行

程序设计

  • 完整程序和数据下载方式私信博主回复:Python实现ARIMA-CNN-LSTM差分自回归移动平均模型结合卷积长短期记忆神经网络时间序列预测
import itertools
import sys 
import math
import numpy as np 
import pandas as pd
from numpy import concatenate
from pandas import concat, DataFrame
import matplotlib.pyplot as plt   
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from keras.layers import Dense, Flatten, RepeatVectorfrom keras.models import Sequential
from keras.layers import LSTM
from keras.layers import GRU
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from keras.layers import Dropout
from statsmodels.tsa.arima_model import ARIMA
import tensorflow as tf
import statsmodels.api as sm
from keras.layers import TimeDistributedimport matplotlib
import warnings
import statsmodels
from scipy import  stats

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/159518.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java学习路线24版

前言 作为大四老学长的秃狼,近日收到大量兄弟们的私信,希望我能出一期java学习路线的视频,很多小伙伴也是大一的新生,都想和我一样做最美逆行者。还有一些非科班准备转码的小伙伴,不想走培训班那条路线想要通过自学找…

佳易王定制开发流水线商品标签自动打印软件,打印格式可定制

佳易王定制开发流水线商品标签自动打印软件,打印格式可以定制 软件特色: 定制试用商品标签打印管理V16.0,打印标签可以自动计算到期日期和品控日期,并打印品名、包装规格、生产日期、到期日期、储存条件、生产包装、品控日期等信…

FRI及相关SNARKs的Fiat-Shamir安全

1. 引言 本文主要参考: Alexander R. Block 2023年论文 Fiat-Shamir Security of FRI and Related SNARKsAlbert Garreta 2023年9月在ZK Summit 10上分享 ZK10: Fiat-Shamir security of FRI and related SNARKs - Albert Garreta (Nethermind) 评估参数用的Sage…

实用-----七牛云绑定自定义域名 配置 HTTPS

实用-----七牛云绑定自定义域名 配置 HTTPS(无废话 无尿点) 1.访问SSL证书购买页面 https://portal.qiniu.com/certificate/ssl 2.购买免费证书 3.补全信息 注意: 域名直接输入 无需 www座机号随意填 区号需要搜索 下面为示例 4. 直接确认…

大模型 其他方案的进度

Llama2 1、中文提问,英文的回答,对于中文不友好 2、网上还没有看到很详细的微调教程 3、虽然Llama2的预训练数据相对于第一代LLaMA扩大了一倍,但是中文预训练数据的比例依然非常少,仅占0.13%,这也导致了原始Llama2的中…

FPGA高端项目:图像采集+GTP+UDP架构,高速接口以太网视频传输,提供2套工程源码加QT上位机源码和技术支持

目录 1、前言免责声明本项目特点 2、相关方案推荐我这里已有的 GT 高速接口解决方案我这里已有的以太网方案 3、设计思路框架设计框图视频源选择OV5640摄像头配置及采集动态彩条视频数据组包GTP 全网最细解读GTP 基本结构GTP 发送和接收处理流程GTP 的参考时钟GTP 发送接口GTP …

三维向量旋转

三维向量旋转 问题描述问题分析 v ⃗ ∣ ∣ \vec{v}_{||} v ∣∣​的旋转 v ⃗ ⊥ \vec{v}_{\bot} v ⊥​的旋转 v ⃗ \vec{v} v 的旋转结论致谢 问题描述 如图1所示,设一个向量 v ⃗ \vec{v} v 绕另一个向量 u ⃗ [ x , y , z ] T \vec{u}[x,y,z]^{T} u [x,y,z]T…

学习LevelDB架构的检索技术

目录 一、LevelDB介绍 二、LevelDB优化检索系统关键点分析 三、读写分离设计和内存数据管理 (一)内存数据管理 跳表代替B树 内存数据分为两块:MemTable(可读可写) Immutable MemTable(只读&#xff0…

Docker 多阶段构建的原理及构建过程展示

Docker多阶段构建是一个优秀的技术,可以显著减少 Docker 镜像的大小,从而加快镜像的构建速度,并减少镜像的传输时间和存储空间。本文将详细介绍 Docker 多阶段构建的原理、用途以及示例。 Docker 多阶段构建的原理 在传统的 Docker 镜像构建…

深度学习实战:基于TensorFlow与OpenCV的手语识别系统

文章目录 写在前面基于TensorFlow与OpenCV的手语识别系统安装环境一、导入工具库二、导入数据集三、数据预处理四、训练模型基于CNN基于LeNet5基于ResNet50 五、模型预测基于OpenCV 写在后面 写在前面 本期内容:基于TensorFlow与OpenCV的手语识别系统 实验环境&…

C++初阶(八)类和对象

📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、Static成员1、Static概念2、Static特性3、试题 二、友元1、友元的类型2、友元函数3、 友元…

Live800:为什么说客户竞争逐渐成为企业竞争的核心?

在当今的市场环境下,产品和价格已经不再是企业争夺市场的唯一手段。客户服务成为了一种关键的竞争优势,越来越多的企业开始关注客户服务和与客户建立联系的重要性。客户竞争逐渐成为企业竞争的核心。 现在,客户对于企业的重要性已经被越来越多…