2015年亚太杯APMCM数学建模大赛C题识别网络中的错误连接求解全过程文档及程序

2015年亚太杯APMCM数学建模大赛

C题 识别网络中的错误连接

原题再现

  网络是描述真实系统结构的强大工具——社交网络描述人与人之间的关系,万维网描述网页之间的超链接关系。随着现代技术的发展,我们积累了越来越多的网络数据,但这些数据部分不完整、不准确,有时甚至失真。例如,在生物网络中,一些早期证明的现有基因-基因和蛋白质-蛋白质相互关系被更高精度的新实验推翻。

  本主题将用6个网络的数据来解决生物学、信息和社交网络中的真实网络问题。这些网络的规模从数百个节点到数百万个节点不等。每个网络连接可能是无定向的(例如,推特中的朋友连接),也可能是定向的(如人们在推特中“关注”他人)。在原始真实网络的基础上,我们添加了一些符合以下标准的假连接:(1)假连接的数量不超过连接总数的10%;(2) 错误连接是以完全随机的方式选取的。

  请阅读附录中的信息,并解决以下问题:

  (1) 开发一个数学模型来理解网络的结构和组织机制。不同类型网络的结构特征和组织原则并不总是相同的。

  (2) 提出了一种识别错误连接的有效方法。显示如何发现结构特征的完整性;说明了数学模型的有效性和准确性以及算法的准确性。

  附件

  数据描述

  与该问题相关的网络在表1中编号为1至6。补充信息中给出了数据本身及其如何获得数据的详细描述。

在这里插入图片描述
  对于上述网络中的任何一个,如果错误连接的真实数量是R,则玩家应提交如何以标准格式识别这些R个错误连接(请参阅补充信息以了解提交的标准格式)。如果r个错误连接中的r个在提交中被正确识别,则得分为r/r。玩家在所有6个网络中获得的总分是衡量算法准确性的唯一指标。

整体求解过程概述(摘要)

  本文分析了复杂网络的结构性质,研究了六种网络中错误连接的识别问题。对于这些网络,我们考虑了它们的拓扑结构,并进一步分析了一些特定的特性。

  首先,我们通过绘制网络的视觉图形来对它们进行视觉研究。经过分析,我们发现几乎所有的网络都存在小世界效应、大分支及其程度分布向右倾斜。生物定向网络不服从幂律,其社会分化明显。生物无向网络和有向网络除了服从幂律和具有协调性外,几乎是一样的。信息网络的节点不具有模块性,并且非常分散。两个网络都服从幂律和非关联性。对于社交网络,定向网络服从幂律。无向网络与有向网络几乎相同。然而,它并没有巨大的分支。

  其次,我们发现生物定向网络与食物链具有相似的特征,生物无定向网络与生物器官相似。对于这两种网络,我们都使用入度和出度以及公共邻居相似性来识别错误连接。结果表明,生物定向网络的精度为0.364,无定向网络的准确度为0.226。信息导向网络类似于互联网。我们使用了入度、出度和PageRank的排序来获得错误连接。两个信息网络具有相同的特性。结果表明,信息定向网络的精度为0.173,无定向网络的准确度为0.309。对于社交导向网络,我们认为它和推特有密切的关注模式。因此,我们假设“大V”节点和“活跃用户”节点的存在。通过对其拓扑算法的分析,我们最终得出准确率为0.679的结果。对于社交无向网络,我们认为它与twitter的好友添加模式具有相同的模式。我们使用相同的方法来处理它,最终结果是0.338。

模型假设:

  1.该错误不会影响每个网络的真实链路拓扑特性。

  2.每个网络的特异性都很低,大多数节点都遵循一定的规律性。

问题分析:

  本研究是现代社会的一个问题,随着网络的积累越来越多,我们如何应对日益庞大复杂的网络数据分析。

  一个问题需要我们对不同的网络体系结构模型分别进行分析,分析其结构和内部机制。首先,我们对数据进行分析,得出不同的网络,如度分布、聚类系数、每个顶点的连接平均测地线距离等。利用这些数据,我们可以分析网络的基本性质。然后我们利用这些数据,建立了每个网络的随机图模型,通过分析和比较模型与原始网络,了解每个网络的不同结构。

  第二个问题要求我们提出一种有效的方法来识别六种不同网络连接中的错误,并展示完整的结构特征,从中发现和解释数学模型和算法的有效性和准确性。通过第一个问题我们已经知道了这些网络拓扑的结构性质,网络分别是有机体、生物无向网络、信息有向网络、无向网络,社交网络有别于社交网络本身的无向结构特征的背离,做出了合理的分析,其中一些肯定会去除正确的链接,然后应用基于相似度的链接预测方法,建立共同的邻居相似度指数,找出错误的链接。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

部分程序如下:
clear;clc;close
A=load('InfoUD.mat');
P=100;
B=[];
B(:,1)=A.node1;
B(:,2)=A.node2;
if ~all(all(B(:,1:2)));B(:,1:2)=B(:,1:2)+1;
end
num=max(max(B));
C=zeros(num);
n=length(B);
for i=1:nC(B(i,1),B(i,2))=C(B(i,1),B(i,2))+1;
end
C=C+C';
R=get_degree_correlation(C);
[M,N_DeD,N_predict,DeD,aver_DeD]=Degree_Distribution(C,P);
N_predict=floor(N_predict);
j=sum(N_predict);
D=[];
for k=1:P+1D=[D (k-1)*ones(1,N_predict(k))];
end
function [ out ] = get_degree(A,k)
row = A(k,:);
out=size(find(row==1),2);
end
function [M,N_DeD,N_predict,DeD,aver_DeD]=Degree_Distribution(A,P)
N=size(A,2);
DeD=zeros(1,N);
for i=1:NDeD(i)=sum(A(i,:));
end
aver_DeD=mean(DeD);
if sum(DeD)==0disp(' 该网络只是由一些孤立点组成');return;
elsefigure;
bar([1:N],DeD); xlabel('节点编号n');ylabel('¸各节点度数K');title('网络中各节点度数大小K的分布图');
end
figure;
M=max(DeD);
predict=0:P;
for i=1:M+1; N_DeD(i)=length(find(DeD==i-1));
end
P_DeD=zeros(1,M+1);
P_DeD(:)=N_DeD(:);
bar([0:M],P_DeD,'r');
xlabel('节点的度K');
ylabel('度为K的节点个数');
title('网络中的节点度个数分布图 ');
hold on
N_predict=interp1([0:M],N_DeD,predict,'spline');
plot(predict,N_predict);
hold off
figure;
PK_DeD=zeros(1,M+1);
PK_DeD(:)=N_DeD(:)./sum(N_DeD);
bar([0:M],PK_DeD);
set(gca,'yscale','log','xscale','log');
xlabel('度k');
ylabel('度为k的顶点所占比例');
title('幂律度分布')
function [ r ] = get_degree_correlation( A)
B = triu(A);
M = size(find(B==1),1);
sum1=0;
sum2=0;
sum3=0;
A1 = find(B==1);
length = size(A1,1);
for i=1:length[x y]=ind2sub(size(B),A1(i));sum1 = sum1+get_degree(A,x)*get_degree(A,y);sum2 = sum2+get_degree(A,x)+get_degree(A,y);sum3 = sum3+get_degree(A,x)^2+get_degree(A,y)^2;end
x1 = sum1/M-(sum2/(2*M))^2;
y1 = sum3/(2*M)-(sum2/(2*M))^2;
r=x1/y1;
end
clear;clc;close
A=load('InfoUD.mat');
P=100;
B=[];
B(:,1)=[A.node1;A.node2];
B(:,2)=[A.node2;A.node1];
load('InfoUD_DeD.mat')
B1=B(:,1);
num0=unique(B1);
mini=min(num0);
maxi=max(num0);
check=mini:maxi;
len=length(check);
i=1;
leak_num=0;
leak=NaN*ones(len);
while i == lenif num0(i)==check(i)i=i+1;elseque_num=num0(i)-check(i);std_num=leak_num;final_num=que_num+leak_num;leak(std_num+1:final_num)=i:i+que_num-1;i=i+que_num;endend
B2=B(:,2);
index=1:len;
reform_data=NaN*ones(len,len);
leak_std=1;
for j=indexif j==leak(leak_std)leak_std=leak_std+1;continue;elsejudge_sign = (B1 == check(j));term=sum(judge_sign);reform_data(1:term,j)=B2(judge_sign);endend
L=zeros(len);
S_xy=zeros(len);
AV_DeD=zeros(len);
for i=indexfor j=indexLx=reform_data(:,i);Ly=reform_data(:,j);Lx=Lx(~isnan(Lx));Ly=Ly(~isnan(Ly));L(i,j)=length((intersect(Lx,Ly))); AV_DeD(i,j)=DeD(i)+DeD(j);S_xy(i,j)=2*L(i,j)/(DeD(i)+DeD(j));end
end
clear;clc;
A=load('S_xy_BU.mat');
UA=load('BioD.mat');
UVA=load('AV_DeD_BioUD.mat');
len1=length(UA.node1);
%C=load('C.mat');
C=zeros(len1,4);
%len1=length(C.C);
D=zeros(len1,4);
C(:,1)=UA.node1;
C(:,2)=UA.node2;
len=length(A.S_xy);
index=1:len;
B=zeros(sum(index),4);
i=1;
k=1;
while i<len+1 B(k:k+len-i,1)=i*ones(len+1-i,1);B(k:k+len-i,2)=i:len;
B(k:k+len-i,3)=A.S_xy(i,i:len);B(k:k+len-i,4)=UVA.AV_DeD(i,i:len);k=k+1+len-i;i=i+1;
end
B(:,1:2)=B(:,1:2)-1;
[B1 B2]=find(isnan(B));
B(B1,:)=[];
len2=length(B);
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/159719.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EthernetIP主站转EtherCAT协议网关采集电力变压器的 Ethernet IP 数据

怎么通过捷米JM-EIPM-ECT网关把ABB电力变压器的 Ethernet IP 数据&#xff0c;连接到欧姆龙PLC上&#xff0c;通过plc去监控电力设备的数据呢&#xff0c;下面是介绍简单的连接方法&#xff0c;采集Ethernet IP从站数据和EtherCAT协议 1 &#xff0c;捷米JM-EIPM-ECT网关连接Et…

C语言实现 1.在一个二维数组中形成 n 阶矩阵,2.去掉靠边元素,生成新的 n-2 阶矩阵;3.求矩阵主对角线下元素之和:4.以方阵形式输出数组。

矩阵形式&#xff1a; 1 1 1 1 1 2 1 1 1 1 3 2 1 1 1 4 3 2 1 1 5 4 3 2 1 完整代码&#xff1a; /*编写以下函数 1&#xff0e;在一个二维数组中形成如以下形式的 n 阶矩阵&#xff1a; 1 1 1 1 1 2 1 1 1 1 3 2 1 1 1 4 3 2 1 1 5 4 3 2 1 2&#xff0e;去掉…

node使用http模块

文章目录 前言一、创建http服务二、设置http的响应报文三、不同请求响应不同数据四、请求响应不同html文件1. 添加www文件夹2. js代码3. 效果 五、get和post请求的区别 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 一、创建http服务 // 1&#xff1a…

abbyy15有哪些新功能更新改进?

可以说优化文档过程&#xff1a;ABBYY在一个工作流中对各种类型的文档进行数字化、检索、编辑、保护、共享和协作。不得不承认FineReader 15最大特色是采用了ABBYY最新推出的基于AI的OCR技术&#xff0c;能够更快速的在同一工作流程中对各种文档进行数字化、检索、编辑、加密、…

Python基础之列表、元组和字典

一文拿捏Python基本数据类型“列表、数组和字典” 引言 Python中的 列表(英文叫list) 、 元组(英文叫tuple)和字典&#xff08;dictionary&#xff09; 也是 序列 特性的&#xff0c;它们也是非常常用的数据类型。 1、列表&#xff08;List&#xff09; 01、概述 列表&#…

海外媒体发稿:如何利用8种出口贸易媒体发稿实现销售突破-华媒舍

出口贸易是许多企业追求业务增长的重要途径。在全球市场上突出自己并吸引潜在客户并非易事。幸运的是&#xff0c;利用出口贸易媒体发稿的机会可以成为推动销售突破的有效策略。本文将介绍8种出口贸易媒体以及如何利用它们发稿推广&#xff0c;从而实现销售突破。 1. 行业媒体…

STM32-LIN总线详解1

.硬件规范&#xff1a; 1.总线形式&#xff1a;一主多从 2.总线通常为12V电压&#xff0c;最高波特率20K&#xff0c;最多容纳16个节点。 也有24V&#xff0c;和其他电平需要共地。 3.总线上波形 4. 单片机STM32与LIN收发器在LIN_CAN开发板上设计。 1K电阻自动控制电路&…

4.网络之TCP

TCP协议(传输层) 文章目录 TCP协议(传输层)1. TCP报文格式2. TCP相关机制2.1 确认应答机制2.2 超时重传机制2.3 连接管理机制&#xff08;重点&#xff09;2.3.1 三次握手2.3.2 四次挥手 2.4 滑动窗口机制2.5 流量控制机制2.6 拥塞控制机制2.7 延迟应答机制2.8 捎带应答机制 3.…

如何使用 NFTScan NFT API 在 Polygon 网络上开发 Web3 应用

Polygon 以前被称为 Matic Network&#xff0c;是一种扩展的解决方案&#xff0c;它提供多种工具来加快并降低区块链网络上交易的成本和复杂性。然而&#xff0c;其区块链上的大量活动使以太坊因增长的传输成本和拥挤的流量几乎瘫痪。Polygon 诞生的主要目的是帮助以太坊解决链…

【蓝桥杯基础题】门牌制作

👑专栏内容:蓝桥杯刷题⛪个人主页:子夜的星的主页💕座右铭:前路未远,步履不停目录 一、题目描述二、题目分析三、代码汇总1、C++代码2、Java 代码四、总结1、枚举思想2、取余判断每位数字一、题目描述 题目链接:门牌制作 小蓝要为一条街的住户制作门牌号。这条街一共…

PyTorch:通过pth文件查看网络结构(查看输入输出维度)

pth模型保存时是按照“整个模型保存”和“只保存模型参数”会影响模型的加载和访问方式 保存方式为“整个模型”&#xff08;torch.save(model, PATH)&#xff09;&#xff1a; import torch if __name__ __main__:model_pth rD:\${modelPath}\${modelName}.pthnet torch.…

6、QtCharts 悬浮曲线效果

文章目录 效果dialog.hdialog.cpp悬浮槽函数 效果 dialog.h #ifndef DIALOG_H #define DIALOG_H#include <QDialog> #include <QtCharts> #include <QLineSeries> #include <QGraphicsScene> #include <QTimer> #include <QSplineSeries>…