第48步 深度学习图像识别:RegNet建模(Pytorch)

基于WIN10的64位系统演示

一、写在前面

(1)RegNet

RegNet (Regulated Networks) 是一种由 Facebook AI 的研究者们在 2020 年提出的神经网络架构,旨在探索网络架构设计的各种可能性,并找出最优的网络设计规则。RegNet 的核心理念是网络的深度(Depth)、宽度(Width)以及每层的时间/空间分辨率(Resolution)之间存在某种规律性的关系。通过系统地研究这些关系,可以发现一种规则,以此设计出在特定任务上性能优越的神经网络。

RegNet 采用了一种名为 "AnyNet" 的参数化模型设计方案,通过对深度、宽度和分辨率三个关键参数进行优化,以探索最佳的网络设计。为此,研究者们使用了一种简单且高效的量化线性模型,通过这种模型可以生成一系列结构各异但性能相近的网络,使得网络在特定任务上达到最佳性能。

RegNet 架构在一系列视觉任务上都表现出了出色的性能,如 ImageNet 分类、物体检测和语义分割等,证明了其有效性和泛化性能。在资源受限的场景下,RegNet 也可以通过减少网络的深度和宽度,以适应各种计算和存储需求。

(2)RegNet的预训练版本

本文使用的是Facebook的高级深度学习框架PyTorchImageModels (timm),需安装此库。该库提供了多种预训练的RegNet模型,这些模型主要包括RegNetX和RegNetY两个系列。每个系列都包括了多种不同复杂度的模型,以满足不同的计算需求:

RegNetX 系列:

regnetx_002 (RegNetX-200MF)

regnetx_004 (RegNetX-400MF)

regnetx_006 (RegNetX-600MF)

regnetx_008 (RegNetX-800MF)

regnetx_016 (RegNetX-1.6GF)

regnetx_032 (RegNetX-3.2GF)

regnetx_040 (RegNetX-4.0GF)

regnetx_064 (RegNetX-6.4GF)

regnetx_080 (RegNetX-8.0GF)

regnetx_120 (RegNetX-12GF)

regnetx_160 (RegNetX-16GF)

regnetx_320 (RegNetX-32GF)

RegNetY 系列:

regnety_002 (RegNetY-200MF)

regnety_004 (RegNetY-400MF)

regnety_006 (RegNetY-600MF)

regnety_008 (RegNetY-800MF)

regnety_016 (RegNetY-1.6GF)

regnety_032 (RegNetY-3.2GF)

regnety_040 (RegNetY-4.0GF)

regnety_064 (RegNetY-6.4GF)

regnety_080 (RegNetY-8.0GF)

regnety_120 (RegNetY-12GF)

regnety_160 (RegNetY-16GF)

regnety_320 (RegNetY-32GF)

每种模型后面的括号中的内容表示的是该模型的理论计算量。例如,RegNetY-200MF表示这个模型的理论计算量为200M FLOPs,即200百万浮点运算。这个计算量可以被用来大致比较模型的复杂度。

二、RegNet迁移学习代码实战

我们继续胸片的数据集:肺结核病人和健康人的胸片的识别。其中,肺结核病人700张,健康人900张,分别存入单独的文件夹中。

(a)导入包

import copy
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
from torch import optim, nn
from torch.optim import lr_scheduler
import os
import matplotlib.pyplot as plt
import warnings
import numpy as npwarnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 设置GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

(b)导入数据集

import torch
from torchvision import datasets, transforms
import os# 数据集路径
data_dir = "./MTB"# 图像的大小
img_height = 100
img_width = 100# 数据预处理
data_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(img_height),transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomRotation(0.2),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),'val': transforms.Compose([transforms.Resize((img_height, img_width)),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
}# 加载数据集
full_dataset = datasets.ImageFolder(data_dir)# 获取数据集的大小
full_size = len(full_dataset)
train_size = int(0.7 * full_size)  # 假设训练集占80%
val_size = full_size - train_size  # 验证集的大小# 随机分割数据集
torch.manual_seed(0)  # 设置随机种子以确保结果可重复
train_dataset, val_dataset = torch.utils.data.random_split(full_dataset, [train_size, val_size])# 将数据增强应用到训练集
train_dataset.dataset.transform = data_transforms['train']# 创建数据加载器
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=4)dataloaders = {'train': train_dataloader, 'val': val_dataloader}
dataset_sizes = {'train': len(train_dataset), 'val': len(val_dataset)}
class_names = full_dataset.classes

(c)导入RegNet

import timm
# 定义RegNet模型
model = timm.create_model('regnety_040', pretrained=True)  # 你可以选择适合你需求的RegNet版本,这里以RegNetY-40GF为例
num_ftrs = model.head.fc.in_features# 根据分类任务修改最后一层
model.head.fc = nn.Linear(num_ftrs, len(class_names))model = model.to(device)# 打印模型摘要
print(model)

(d)编译模型

# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = optim.Adam(model.parameters())# 定义学习率调度器
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)# 开始训练模型
num_epochs = 10
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0# 初始化记录器
train_loss_history = []
train_acc_history = []
val_loss_history = []
val_acc_history = []for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 每个epoch都有一个训练和验证阶段for phase in ['train', 'val']:if phase == 'train':model.train()  # Set model to training modeelse:model.eval()   # Set model to evaluate moderunning_loss = 0.0running_corrects = 0# 遍历数据for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)labels = labels.to(device)# 零参数梯度optimizer.zero_grad()# 前向with torch.set_grad_enabled(phase == 'train'):outputs = model(inputs)_, preds = torch.max(outputs, 1)loss = criterion(outputs, labels)# 只在训练模式下进行反向和优化if phase == 'train':loss.backward()optimizer.step()# 统计running_loss += loss.item() * inputs.size(0)running_corrects += torch.sum(preds == labels.data)epoch_loss = running_loss / dataset_sizes[phase]epoch_acc = (running_corrects.double() / dataset_sizes[phase]).item()# 记录每个epoch的loss和accuracyif phase == 'train':train_loss_history.append(epoch_loss)train_acc_history.append(epoch_acc)else:val_loss_history.append(epoch_loss)val_acc_history.append(epoch_acc)print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))# 深拷贝模型if phase == 'val' and epoch_acc > best_acc:best_acc = epoch_accbest_model_wts = copy.deepcopy(model.state_dict())print()print('Best val Acc: {:4f}'.format(best_acc))# 加载最佳模型权重
#model.load_state_dict(best_model_wts)
#torch.save(model, 'regnet_best_model.pth')
#print("The trained model has been saved.")

(e)Accuracy和Loss可视化

epoch = range(1, len(train_loss_history)+1)fig, ax = plt.subplots(1, 2, figsize=(10,4))
ax[0].plot(epoch, train_loss_history, label='Train loss')
ax[0].plot(epoch, val_loss_history, label='Validation loss')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Loss')
ax[0].legend()ax[1].plot(epoch, train_acc_history, label='Train acc')
ax[1].plot(epoch, val_acc_history, label='Validation acc')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Accuracy')
ax[1].legend()#plt.savefig("loss-acc.pdf", dpi=300,format="pdf")

观察模型训练情况:

蓝色为训练集,橙色为验证集。

(f)混淆矩阵可视化以及模型参数

from sklearn.metrics import classification_report, confusion_matrix
import math
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib.pyplot import imshow# 定义一个绘制混淆矩阵图的函数
def plot_cm(labels, predictions):# 生成混淆矩阵conf_numpy = confusion_matrix(labels, predictions)# 将矩阵转化为 DataFrameconf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)  plt.figure(figsize=(8,7))sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")plt.title('Confusion matrix',fontsize=15)plt.ylabel('Actual value',fontsize=14)plt.xlabel('Predictive value',fontsize=14)def evaluate_model(model, dataloader, device):model.eval()   # 设置模型为评估模式true_labels = []pred_labels = []# 遍历数据for inputs, labels in dataloader:inputs = inputs.to(device)labels = labels.to(device)# 前向with torch.no_grad():outputs = model(inputs)_, preds = torch.max(outputs, 1)true_labels.extend(labels.cpu().numpy())pred_labels.extend(preds.cpu().numpy())return true_labels, pred_labels# 获取预测和真实标签
true_labels, pred_labels = evaluate_model(model, dataloaders['val'], device)# 计算混淆矩阵
cm_val = confusion_matrix(true_labels, pred_labels)
a_val = cm_val[0,0]
b_val = cm_val[0,1]
c_val = cm_val[1,0]
d_val = cm_val[1,1]# 计算各种性能指标
acc_val = (a_val+d_val)/(a_val+b_val+c_val+d_val)  # 准确率
error_rate_val = 1 - acc_val  # 错误率
sen_val = d_val/(d_val+c_val)  # 灵敏度
sep_val = a_val/(a_val+b_val)  # 特异度
precision_val = d_val/(b_val+d_val)  # 精确度
F1_val = (2*precision_val*sen_val)/(precision_val+sen_val)  # F1值
MCC_val = (d_val*a_val-b_val*c_val) / (np.sqrt((d_val+b_val)*(d_val+c_val)*(a_val+b_val)*(a_val+c_val)))  # 马修斯相关系数# 打印出性能指标
print("验证集的灵敏度为:", sen_val, "验证集的特异度为:", sep_val,"验证集的准确率为:", acc_val, "验证集的错误率为:", error_rate_val,"验证集的精确度为:", precision_val, "验证集的F1为:", F1_val,"验证集的MCC为:", MCC_val)# 绘制混淆矩阵
plot_cm(true_labels, pred_labels)# 获取预测和真实标签
train_true_labels, train_pred_labels = evaluate_model(model, dataloaders['train'], device)
# 计算混淆矩阵
cm_train = confusion_matrix(train_true_labels, train_pred_labels)  
a_train = cm_train[0,0]
b_train = cm_train[0,1]
c_train = cm_train[1,0]
d_train = cm_train[1,1]
acc_train = (a_train+d_train)/(a_train+b_train+c_train+d_train)
error_rate_train = 1 - acc_train
sen_train = d_train/(d_train+c_train)
sep_train = a_train/(a_train+b_train)
precision_train = d_train/(b_train+d_train)
F1_train = (2*precision_train*sen_train)/(precision_train+sen_train)
MCC_train = (d_train*a_train-b_train*c_train) / (math.sqrt((d_train+b_train)*(d_train+c_train)*(a_train+b_train)*(a_train+c_train))) 
print("训练集的灵敏度为:",sen_train, "训练集的特异度为:",sep_train,"训练集的准确率为:",acc_train, "训练集的错误率为:",error_rate_train,"训练集的精确度为:",precision_train, "训练集的F1为:",F1_train,"训练集的MCC为:",MCC_train)# 绘制混淆矩阵
plot_cm(train_true_labels, train_pred_labels)

效果不错,但是第一次遇到灵敏度大于特异度的模型:

(g)AUC曲线绘制

from sklearn import metrics
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sns
import pandas as pd
import mathdef plot_roc(name, labels, predictions, **kwargs):fp, tp, _ = metrics.roc_curve(labels, predictions)plt.plot(fp, tp, label=name, linewidth=2, **kwargs)plt.plot([0, 1], [0, 1], color='orange', linestyle='--')plt.xlabel('False positives rate')plt.ylabel('True positives rate')ax = plt.gca()ax.set_aspect('equal')# 确保模型处于评估模式
model.eval()train_ds = dataloaders['train']
val_ds = dataloaders['val']val_pre_auc   = []
val_label_auc = []for images, labels in val_ds:for image, label in zip(images, labels):      img_array = image.unsqueeze(0).to(device)  # 在第0维增加一个维度并将图像转移到适当的设备上prediction_auc = model(img_array)  # 使用模型进行预测val_pre_auc.append(prediction_auc.detach().cpu().numpy()[:,1])val_label_auc.append(label.item())  # 使用Tensor.item()获取Tensor的值
auc_score_val = metrics.roc_auc_score(val_label_auc, val_pre_auc)train_pre_auc   = []
train_label_auc = []for images, labels in train_ds:for image, label in zip(images, labels):img_array_train = image.unsqueeze(0).to(device) prediction_auc = model(img_array_train)train_pre_auc.append(prediction_auc.detach().cpu().numpy()[:,1])  # 输出概率而不是标签!train_label_auc.append(label.item())
auc_score_train = metrics.roc_auc_score(train_label_auc, train_pre_auc)plot_roc('validation AUC: {0:.4f}'.format(auc_score_val), val_label_auc , val_pre_auc , color="red", linestyle='--')
plot_roc('training AUC: {0:.4f}'.format(auc_score_train), train_label_auc, train_pre_auc, color="blue", linestyle='--')
plt.legend(loc='lower right')
#plt.savefig("roc.pdf", dpi=300,format="pdf")print("训练集的AUC值为:",auc_score_train, "验证集的AUC值为:",auc_score_val)

ROC曲线如下:

 优秀的ROC曲线!

三、调整过程

作为一个轻量级别的网络,AUC达到89%还是很不错的了,又是一个在移动端部署的有利模型。

四、RegNet、SqueezeNet、ShuffleNet、Nasnet、ResNet50、InceptionResnetV2、Mobilenet、Efficientnet、DenseNet201、Inception V3和VGG19的对比

选择最合适的模型时,还需要考虑其他因素,比如任务性质、硬件限制、数据集大小和复杂性等等。在某些情况下,小型模型(如SqueezeNet或ShuffleNet)可能会有更好的性能,因为它们可以在较低的计算成本下运行。在其他情况下,更复杂的模型(如EfficientNet或ResNet)可能会提供更高的精度。

五、数据

链接:https://pan.baidu.com/s/15vSVhz1rQBtqNkNp2GQyVw?pwd=x3jf

提取码:x3jf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/15975.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全志V3S嵌入式驱动开发(四种启动方式)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 对于v3s的启动方式分析,怎么研究都不为过。对我们整个系列文章比较熟悉的同学来说,这幅图真的是太熟悉了, 整个流程不复杂。它主要是告诉我们,v3s加载的顺序是怎么样的…

基于智能手机的医院服务客户端设计与实现(论文+源码)_kaic

摘 要 近年来,随着中国经济的迅猛发展,医疗技术水平也在不断提高,但由于人口数目巨大,导致医疗资源人均分配不足的情况依旧十分严峻。预约挂号一直是制约医疗机构服务质量提高的主要环节之一。在传统预约挂号方式下,繁…

APP测试面试题快问快答(六)

26. App测试工程师到底测些什么? 考察点:是否有移动app测试的相关经验 界面测试 功能测试 兼容性测试 性能测试 稳定性测试 安全性测试 环境的测试 专项测试 –安装,卸载,流量,电量,弱网和FPS 27…

华为云函数工作流FunctionGraph新手操作指南

函数工作流(FunctionGraph)是华为云提供的一款无服务器(Serverless)计算服务,无服务器计算是一种托管服务,服务提供商会实时为你分配充足的资源,而不需要预留专用的服务器或容量,真正…

【LeetCode】217. 存在重复元素

217. 存在重复元素(简单) 方法一:哈希表长度比较 思路 针对重复元素,很容易就想到 set。我们可以先将 nums 中的所有元素存入set,然后比较两个数据结构的长度,如果相等则说明不存在重复元素,反…

【计算机视觉 | 图像分类】arxiv 计算机视觉关于图像分类的学术速递(6月 29 日论文合集)

文章目录 一、分类|识别相关(12篇)1.1 Pseudo-Bag Mixup Augmentation for Multiple Instance Learning Based Whole Slide Image Classification1.2 Improving Primate Sounds Classification using Binary Presorting for Deep Learning1.3 Challenges of Zero-Shot Recognit…

pycharm如何给一串中文快捷加引号(方法二)

点击上方“Python爬虫与数据挖掘”,进行关注 回复“书籍”即可获赠Python从入门到进阶共10本电子书 今 日 鸡 汤 商人重利轻别离,前月浮梁买茶去。 大家好,我是皮皮。 一、前言 前几天在Python白银群【此类生物】问了一个Pycharm基础的问题&a…

EcoVadis 2023年最新评分细则

【EcoVadis 2023年最新评分细则】 Ecovadis 的四大主题 EcoVadis 企业社会责任评级方法的目标是通过其方针政策、实施执行和绩效反馈来衡量一家公司的企业社会责任管理系统的质量。 EcoVadis企业社会责任(CSR)评估方法基于七项基本原则(如图&…

架构-新教材补充内容

系统工程 两分,需要计算的选择题 #mermaid-svg-UYHr1rzu8HIFQAsT {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-UYHr1rzu8HIFQAsT .error-icon{fill:#552222;}#mermaid-svg-UYHr1rzu8HIFQAsT .error-te…

SQL多表查询

多表查询,也称为关联查询,指两个或更多个表一起完成查询操作。 前提条件:这些一起查询的表之间是有关系的(一对一、一对多),它们之间一定是有关联字段,这个关联字段可能建立了外键,…

【跟小嘉学 Rust 编程】三、Rust 的基本程序概念

系列文章目录 【跟小嘉学 Rust 编程】一、Rust 编程基础 【跟小嘉学 Rust 编程】二、Rust 包管理工具使用 【跟小嘉学 Rust 编程】三、Rust 的基本程序概念 文章目录 系列文章目录前言一、变量以及可变性1.1、变量声明语法1.2、不可变变量1.3、未使用变量警告1.4、使用 let mu…

计算机网络概述(二)

计算机网络的定义 计算机网络并没有一个统一的定义,不同阶段是有不同的定义。 最简单的定义:计算机网络是一些互联的,自治的计算机集合。互联:指计算机之间可以通过有线或无线的方式进行数据通信;自治指的是独…