【C语言初阶】函数

目录

一、函数是什么

二、C语言中函数的分类

2.1 库函数:

strcpy

memset

2.2 自定义函数

三、函数的参数

3.1 实际参数(实参)

3.2 形式参数(形参)

四、函数的调用

4.1 传值调用

4.2 传址调用

五、函数的嵌套调用和链式访问

5.1 嵌套调用

5.2 链式访问

六、函数的声明和定义

6.1 函数声明:

6.2 函数定义

七、函数递归

7.1 什么是递归

7.2 递归的两个必要条件

7.2.1 练习1

7.2.2 练习2

7.3 递归与迭代

7.3.1 练习3

7.3.2 练习4


一、函数是什么

数学中我们常见到函数的概念。但是你了解C语言中的函数吗?

维基百科中对函数的定义:子程序

  • 在计算机科学中,子程序(英语:Subroutine, procedure, function, routine, method, subprogram, callable unit),是一个大型程序中的某部分代码, 由一个或多个语句块组 成。它负责完成某项特定任务,而且相较于其他代 码,具备相对的独立性。
  • 一般会有输入参数并有返回值,提供对过程的封装和细节的隐藏。这些代码通常被集成为软 件库。

二、C语言中函数的分类

  1. 库函数
  2. 自定义函数

2.1 库函数:

为什么会有库函数?

  1. 我们知道在我们学习C语言编程的时候,总是在一个代码编写完成之后迫不及待的想知道结果,想 把这个结果打印到我们的屏幕上看看。这个时候我们会频繁的使用一个功能:将信息按照一定的格 式打印到屏幕上(printf)。
  2. 在编程的过程中我们会频繁的做一些字符串的拷贝工作(strcpy)。
  3. 在编程是我们也计算,总是会计算n的k次方这样的运算(pow)。

像上面我们描述的基础功能,它们不是业务性的代码。我们在开发的过程中每个程序员都可能用的到, 为了支持可移植性和提高程序的效率,所以C语言的基础库中提供了一系列类似的库函数,方便程序员 进行软件开发。

那怎么学习库函数呢?

这里我们简单的看看:www.cplusplus.com

简单的总结,C语言常用的库函数都有:

  • IO函数
  • 字符串操作函数
  • 字符操作函数
  • 内存操作函数
  • 时间/日期函数
  • 数学函数
  • 其他库函数

我们参照文档,学习几个库函数:

strcpy
char * strcpy ( char * destination, const char * source );
memset
void * memset ( void * ptr, int value, size_t num );

注:

但是库函数必须知道的一个秘密就是:使用库函数,必须包含 #include 对应的头文件。

这里对照文档来学习上面几个库函数,目的是掌握库函数的使用方法

2.2 自定义函数

如果库函数能干所有的事情,那还要程序员干什么?

所有更加重要的是自定义函数。

自定义函数和库函数一样,有函数名,返回值类型和函数参数。

但是不一样的是这些都是我们自己来设计。这给程序员一个很大的发挥空间。

函数的组成:

ret_type fun_name(para1, * )
{statement;    //语句项
}ret_type 返回类型
fun_name 函数名
para1    函数参数

例子1: 写一个函数可以找出两个整数中的最大值。

#include <stdio.h>//get_max函数的设计
int get_max(int x, int y)
{return (x>y)?(x):(y);
}
int main()
{int num1 = 10;int num2 = 20;int max = get_max(num1, num2);printf("max = %d\n", max);return 0;
}

例子2: 写一个函数可以交换两个整形变量的内容。

#include <stdio.h>//实现成函数,但是不能完成任务
void Swap1(int x, int y)
{int tmp = 0;tmp = x;x = y;y = tmp;
}//正确的版本
void Swap2(int *px, int *py)
{int tmp = 0;tmp = *px;*px = *py;*py = tmp;
}
int main()
{int num1 = 1;int num2 = 2;Swap1(num1, num2);printf("Swap1::num1 = %d num2 = %d\n", num1, num2);Swap2(&num1, &num2);printf("Swap2::num1 = %d num2 = %d\n", num1, num2);return 0;
}

三、函数的参数

3.1 实际参数(实参)

        真实传给函数的参数,叫实参。 实参可以是:常量、变量、表达式、函数等。 无论实参是何种类型的量,在进行函数调用时,它们都必须有确定的值,以便把这些值传送给形参。

3.2 形式参数(形参)

        形式参数是指函数名后括号中的变量,因为形式参数只有在函数被调用的过程中才实例化(分配内存单元),所以叫形式参数。形式参数当函数调用完成之后就自动销毁了。因此形式参数只在函数中有效。

        上面例子2中 Swap1 和 Swap2 函数中的参数 x,y,px,py 都是形式参数。在main函数中传给 Swap1 的 num1 , num2 和传 给 Swap2 函数的 &num1 , &num2 是实际参数。

这里我们对函数的实参和形参进行分析:

代码对应的内存分配如下:

        这里可以看到 Swap1 函数在调用的时候, x , y 拥有自己的空间,同时拥有了和实参一模一样的内容。 所以我们可以简单的认为:形参实例化之后其实相当于实参的一份临时拷贝。

四、函数的调用

4.1 传值调用

函数的形参和实参分别占有不同内存块,对形参的修改不会影响实参。

4.2 传址调用

  • 传址调用是把函数外部创建变量的内存地址传递给函数参数的一种调用函数的方式。
  • 这种传参方式可以让函数和函数外边的变量建立起真正的联系,也就是函数内部可以直接操 作函数外部的变量。

五、函数的嵌套调用和链式访问

函数和函数之间可以根据实际的需求进行组合的,也就是互相调用的。

5.1 嵌套调用

#include <stdio.h>
void new_line()
{printf("hehe\n");
}
void three_line()
{int i = 0;for(i=0; i<3; i++){new_line();}
}
int main()
{three_line();return 0;
}

函数可以嵌套调用,但是不能嵌套定义。

5.2 链式访问

把一个函数的返回值作为另外一个函数的参数。

#include <stdio.h>
#include <string.h>
int main()
{char arr[20] = "hello";int ret = strlen(strcat(arr,"bit"));   //这里介绍一下strlen函数printf("%d\n", ret);return 0;
}
#include <stdio.h>
int main()
{printf("%d", printf("%d", printf("%d", 43)));//结果是啥?//注:printf函数的返回值是打印在屏幕上字符的个数return 0;
}

六、函数的声明和定义

6.1 函数声明:

  1. 告诉编译器有一个函数叫什么,参数是什么,返回类型是什么。但是具体是不是存在,函数 声明决定不了。
  2. 函数的声明一般出现在函数的使用之前。要满足先声明后使用。
  3. 函数的声明一般要放在头文件中的。

6.2 函数定义

函数的定义是指函数的具体实现,交待函数的功能实现。

test.h的内容

放置函数的声明

#ifndef __TEST_H__
#define __TEST_H__
//函数的声明
int Add(int x, int y);#endif //__TEST_H__

test.c的内容

放置函数的实现

#include "test.h"
//函数Add的实现
int Add(int x, int y)
{return x+y;
}

七、函数递归

7.1 什么是递归

程序调用自身的编程技巧称为递归( recursion)。

        递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接 调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略。只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。

递归的主要思考方式在于:把大事化小

7.2 递归的两个必要条件

  • 存在限制条件,当满足这个限制条件的时候,递归便不再继续。
  • 每次递归调用之后越来越接近这个限制条件。
7.2.1 练习1

接受一个整型值(无符号),按照顺序打印它的每一位。 例如: 输入:1234,输出 1 2 3 4

#include <stdio.h>
void print(int n)
{if(n>9){print(n/10);}printf("%d ", n%10);
}
int main()
{int num = 1234;print(num);return 0;
}
7.2.2 练习2

编写函数不允许创建临时变量,求字符串的长度。

#incude <stdio.h>
int Strlen(const char*str)
{if(*str == '\0')return 0;elsereturn 1+Strlen(str+1);
}
int main()
{char *p = "abcdef";int len = Strlen(p);printf("%d\n", len);return 0;
}

7.3 递归与迭代

7.3.1 练习3

求n的阶乘。(不考虑溢出)

int factorial(int n)
{if(n <= 1)return 1;elsereturn n * factorial(n-1);
}
7.3.2 练习4

求第n个斐波那契数。(不考虑溢出)

int fib(int n)
{if (n <= 2)         return 1;elsereturn fib(n - 1) + fib(n - 2);
}

但是我们发现有问题;

        在使用 fib 这个函数的时候如果我们要计算第50个斐波那契数字的时候特别耗费时间。 使用 factorial 函数求10000的阶乘(不考虑结果的正确性),程序会崩溃。

为什么呢?

        我们发现 fib 函数在调用的过程中很多计算其实在一直重复。 如果我们把代码修改一下:

int count = 0;//全局变量
int fib(int n)
{if(n == 3)count++;if (n <= 2)         return 1;elsereturn fib(n - 1) + fib(n - 2);
}

最后我们输出看看count,是一个很大很大的值。

那我们如何改进呢?

  • 在调试 factorial 函数的时候,如果你的参数比较大,那就会报错: stack overflow(栈溢出) 这样的信息。
  • 系统分配给程序的栈空间是有限的,但是如果出现了死循环,或者(死递归),这样有可能导致一 直开辟栈空间,最终产生栈空间耗尽的情况,这样的现象我们称为栈溢出。

那如何解决上述的问题:

  1. 将递归改写成非递归。
  2. 使用static对象替代 nonstatic 局部对象。在递归函数设计中,可以使用 static 对象替代 nonstatic 局部对象(即栈对象),这不仅可以减少每次递归调用和返回时产生和释放 nonstatic 对象的开销,而且 static 对象还可以保 存递归调用的中间状态,并且可为各个调用层所访问。

比如,下面代码就采用了,非递归的方式来实现:

//求n的阶乘
int factorial(int n)
{int result = 1;while (n > 1){result *= n ;n -= 1;}return result;
}
//求第n个斐波那契数
int fib(int n)
{int result;int pre_result;int next_older_result;result = pre_result = 1;while (n > 2){n -= 1;next_older_result = pre_result;pre_result = result;result = pre_result + next_older_result;}return result;
}

提示:

  1. 许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更为清晰。
  2. 但是这些问题的迭代实现往往比递归实现效率更高,虽然代码的可读性稍微差些。
  3. 当一个问题相当复杂,难以用迭代实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/159928.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试必备技能—接口测试

接口测试&#xff0c;其实并没有那么可怕&#xff0c;但是作为测试人员也是必不可少的技能。 接口分为&#xff1a;内部接口和外部接口。 内部接口&#xff1a;是浏览器与服务器的接口。这个很容易理解&#xff0c;web开发一般分前端和后端&#xff0c;前端开发人员用html/cs…

Matlab2022a详细步骤【操作简单】

一、下载 &#xff08;1&#xff09;百度网盘下载 提取码07cc &#xff08;2&#xff09;夸克网盘下载 二、安装 1.打开安装包 2. 用“资源管理器”打开iso镜像文件 右键点击“setup”&#xff0c;以管理员身份运行 选择高级选项&#xff0c;“我有文件安装密钥” 从安装…

为Web3生态创新赋能,ETH Hong Kong 2023圆满落幕

摘要&#xff1a;10月22日至24日&#xff0c;由以太坊原生zkEVM扩容方案Scroll与Web3技术风投公司Newman Group共同举办的首届以太坊香港盛会“ETH Hong Kong 2023”在数码港成功举行&#xff0c;、ABCDE和852Web3作为筹委会参与其中。本次活动三天内吸引了2500名与会者参与&am…

AI技术发展:防范AI诈骗,守护数字安全

随着AI技术的迅猛发展&#xff0c;人工智能赋予了计算机更多的能力&#xff0c;包括自然语言处理、图像生成、声音合成等。这些领域的突破为人们提供了全新的体验和便捷&#xff0c;但同时也催生了一些潜在的安全风险&#xff0c;其中最突出的就是AI诈骗。本文将探讨如何防范AI…

二叉树采用二叉链表存储:编写计算二叉树最大宽度的算法(二叉树的最大宽度是指二叉树所有层中结点个数的最大值)

二叉树采用二叉链表存储&#xff1a;编写计算二叉树最大宽度的算法 &#xff08;二叉树的最大宽度是指二叉树所有层中结点个数的最大值&#xff09; 和二叉树有关的代码&#xff0c;基本都逃不过“先中后层”&#xff0c;这四种遍历 而我们这里是让你计算最大宽度&#xff0c…

【Android】android studio 怎么下载NDK

序言 新版的android studio在【Project Structure】里面的NDK路径是灰色的&#xff0c;无法点击&#xff0c;导致找不到ndk路径&#xff0c;也无法添加ndk。 下载方法 去这里找&#xff0c;一定要点这个按钮才能出现ndk。 下载之后&#xff0c;要在这个文件里面添加ndk路径

SpringCloud(五) Eureka与Nacos的区别

SpringCloud(二) Eureka注册中心的使用-CSDN博客 SpringCloud(四) Nacos注册中心-CSDN博客 在这两篇博文中我们详细讲解了Eureka和Nacos分别作为微服务的注册中心的使用方法和注意事项,但是两者之间也有一些区别. 一, Nacos实例分类 Nacos实例分为两种类型: 临时实例:如果实例…

OpenAI最新官方GPT最佳实践指南,一文讲清ChatGPT的Prompt玩法

原文&#xff1a;Sina Visitor System OpenAI的官网发表万字GPT最佳实践指南&#xff0c;讲清Prompt提示词的原则和策略&#xff0c;这里是总结和全文翻译 原创图像&#xff0c;AI辅助生成 OpenAI的官网上刚刚发表一篇万字的GPT最佳实践指南&#xff0c;这份指南把写好Promp…

公司新来了个38K的人,让我见识到了什么才是测试天花板

一进公司&#xff0c;看见门外有几个带着行李在外面等待的人&#xff0c;应该就是来入职的&#xff0c;果不其然&#xff0c;在进公司后&#xff0c;召开了新人见面会&#xff0c;让他们做了自我介绍和职业规划以及部门&#xff0c;令我印象最深刻的就是一个刚刚从腾讯离职出来…

vue实现一个账号在同一时间只有一个能登录的效果

目录 1.实现方法 2.实现示例 1.实现方法 要实现一个账号在同一时间只有一个能登录的效果&#xff0c;你可以使用以下步骤来实现&#xff1a; 在后端服务器端设置一个标志位&#xff0c;用于标记用户是否已登录。这个标志位可以存储在数据库中或者缓存在服务器内存中。当用户…

【Linux】多路IO复用技术②——poll详解如何使用poll模型在本地主机实现简易的一对多服务器(附图解与代码实现)

在阅读本篇博客之前&#xff0c;建议大家先去看一下我之前写的这篇博客&#xff0c;否则你很可能会一头雾水 【Linux】多路IO复用技术①——select详解&如何使用select模型在本地主机实现简易的一对多服务器&#xff08;附图解与代码实现&#xff09;http://t.csdnimg.cn/…

谈一谈SQLite、MySQL、PostgreSQL三大数据库

每一份付出&#xff0c;必将有一份收货&#xff0c;就像这个小小的果实&#xff0c;时间到了&#xff0c;也就会开花结果… 三大数据库概述 SQLite、MySQL 和 PostgreSQL 都是流行的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;但它们在功能、适用场景和性…