贰[2],OpenCV函数解析

1,imread:图片读取

CV_EXPORTS_W Mat imread( const String& filename, int flags = IMREAD_COLOR );//参数1(filename):文件地址
//参数2(flags):读取标志


注:ImreadModes,参数2(flags)枚举定义

enum ImreadModes {
IMREAD_UNCHANGED            = -1, IMREAD_GRAYSCALE            = 0,  IMREAD_COLOR                = 1,  IMREAD_ANYDEPTH             = 2, IMREAD_ANYCOLOR             = 4, IMREAD_LOAD_GDAL            = 8,  IMREAD_REDUCED_GRAYSCALE_2  = 16, IMREAD_REDUCED_COLOR_2      = 17,IMREAD_REDUCED_GRAYSCALE_4  = 32, IMREAD_REDUCED_COLOR_4      = 33, IMREAD_REDUCED_GRAYSCALE_8  = 64, IMREAD_REDUCED_COLOR_8      = 65, IMREAD_IGNORE_ORIENTATION   = 128 };/*
IMREAD_UNCHANGED: 如果设置,将加载的图像原样返回(如果有alpha通道,否则会被裁剪)。忽略EXIF方向。
IMREAD_GRAYSCALE: 如果设置,总是将图像转换为单通道灰度图像(编解码器内部转换)。
IMREAD_COLOR: 如果设置,总是将图像转换为3通道BGR彩色图像。
IMREAD_ANYDEPTH: 如果设置,当输入具有相应的深度时,返回16位/32位图像,否则将其转换为8位。
IMREAD_ANYCOLOR: 如果设置,图像以任何可能的颜色格式读取。
IMREAD_LOAD_GDAL: 如果设置,使用gdal驱动程序加载图像。
IMREAD_REDUCED_GRAYSCALE_2 到 IMREAD_REDUCED_GRAYSCALE_8: 这些标志将图像转换为单通道灰度图像,并将图像大小减少一半或四分之一或八分之一。
IMREAD_REDUCED_COLOR_2 到 IMREAD_REDUCED_COLOR_8: 这些标志将图像转换为3通道BGR彩色图像,并将图像大小减少一半或四分之一或八分之一。
IMREAD_IGNORE_ORIENTATION: 如果设置,不根据EXIF的方向标志旋转图像。
*/

2,imwrite:图片保存

CV_EXPORTS_W bool imwrite( const String& filename, InputArray img,const std::vector<int>& params = std::vector<int>());//参数1(filename):文件地址
//参数2(img):图片数据
//参数3(params ):为特定格式保存的参数编码


注:**ImwriteFlags** ,参数3(params)枚举定义

enum ImwriteFlags {IMWRITE_JPEG_QUALITY        = 1,  IMWRITE_JPEG_PROGRESSIVE    = 2,  IMWRITE_JPEG_OPTIMIZE       = 3,  IMWRITE_JPEG_RST_INTERVAL   = 4, IMWRITE_JPEG_LUMA_QUALITY   = 5,  IMWRITE_JPEG_CHROMA_QUALITY = 6,  IMWRITE_JPEG_SAMPLING_FACTOR = 7, IMWRITE_PNG_COMPRESSION     = 16, IMWRITE_PNG_STRATEGY        = 17, IMWRITE_PNG_BILEVEL         = 18, IMWRITE_PXM_BINARY          = 32, IMWRITE_EXR_TYPE            = (3 << 4) + 0, IMWRITE_EXR_COMPRESSION     = (3 << 4) + 1, IMWRITE_EXR_DWA_COMPRESSION_LEVEL = (3 << 4) + 2, IMWRITE_WEBP_QUALITY        = 64, /IMWRITE_HDR_COMPRESSION     = (5 << 4) + 0, IMWRITE_PAM_TUPLETYPE       = 128,IMWRITE_TIFF_RESUNIT        = 256,IMWRITE_TIFF_XDPI           = 257,IMWRITE_TIFF_YDPI           = 258,IMWRITE_TIFF_COMPRESSION    = 259,IMWRITE_JPEG2000_COMPRESSION_X1000 = 272,IMWRITE_AVIF_QUALITY        = 512,IMWRITE_AVIF_DEPTH          = 513,IMWRITE_AVIF_SPEED          = 514 };/*
IMWRITE_JPEG_QUALITY:用于JPEG图像,表示质量等级,值范围从0到100,其中100表示最高质量。默认值为95。
IMWRITE_JPEG_PROGRESSIVE:启用JPEG渐进式扫描,值为0或1,默认值为False。
IMWRITE_JPEG_OPTIMIZE:优化JPEG图像,值为0或1,默认值为False。
IMWRITE_JPEG_RST_INTERVAL:JPEG图像中重新同步标记的间隔,值范围从0到65535,默认值为0(无重新同步)。
IMWRITE_JPEG_LUMA_QUALITY:单独的亮度质量级别,值范围从0到100,默认值为-1(不使用)。
IMWRITE_JPEG_CHROMA_QUALITY:单独的色度质量级别,值范围从0到100,默认值为-1(不使用)。
IMWRITE_JPEG_SAMPLING_FACTOR:用于JPEG的采样因子,参见cv::ImwriteJPEGSamplingFactorParams。
IMWRITE_PNG_COMPRESSION:用于PNG的压缩级别,值范围从0到9。较高的值表示较小的尺寸和更长的压缩时间。当指定此标志时,策略更改为IMWRITE_PNG_STRATEGY_DEFAULT(Z_DEFAULT_STRATEGY)。默认值为1(最佳速度设置)。
IMWRITE_PNG_STRATEGY:PNG的压缩策略,可以是cv::ImwritePNGFlags中的一个值,默认值为IMWRITE_PNG_STRATEGY_RLE。
IMWRITE_PNG_BILEVEL:二进制级别的PNG,值为0或1,默认值为0。
IMWRITE_PXM_BINARY:对于PPM、PGM或PBM,可以是一个二进制格式标志,值为0或1。默认值为1。
*/

3,imshow:图片显示

CV_EXPORTS_W void imshow(const String& winname, InputArray mat);//参数1(winname):窗口名称
//参数2(img):图片数据

4,cvtColor:颜色空间转换


实现**RGB**颜色空间转**HSV/HSI/灰度**等颜色空间。

CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );//参数1(src):原图
//参数2(dst):处理后的图
//参数3(code):颜色空间转换标识符
//参数4(dstCn):处理后图片的通道数,=0,则和原图相同。


注:**ColorConversionCodes** ,参数3(code)对应枚举定义

enum ColorConversionCodes {COLOR_BGR2BGRA     = 0, //!< add alpha channel to RGB or BGR imageCOLOR_RGB2RGBA     = COLOR_BGR2BGRA,......
};

5,ellipse:画椭圆


两个重载函数
函数1:

CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,double angle, double startAngle, double endAngle,const Scalar& color, int thickness = 1,int lineType = LINE_8, int shift = 0);//参数1(img):待绘制的图像
//参数2(center):椭圆中心点
//参数3(axes):长短轴尺寸
//参数4(angle):角度
//参数5(startAngle) :弧度段起始角度
//参数6(endAngle) :弧度段结束角度
//参数7(color):椭圆颜色
//参数8(thickness ):画笔线宽
//参数9(lineType ):画笔线类型     
//参数10(shift ):绘制精度,默认为0(单精度) 


注:startAngle=0,endAngle=360,整个椭圆

函数2:

CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,int thickness = 1, int lineType = LINE_8);//参数1(img):待绘制的图像
//参数2(center):椭圆的形状,RotatedRect,有三个属性:angle center size
//参数3(color):椭圆颜色
//参数4(thickness ):线宽
//参数5(lineType ):线类型


注:**LineTypes** 参数5(lineType)枚举定义

enum LineTypes {FILLED  = -1,LINE_4  = 4, //!< 4-connected lineLINE_8  = 8, //!< 8-connected lineLINE_AA = 16 //!< antialiased line
};

6,circle:画圆

CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,const Scalar& color, int thickness = 1,int lineType = LINE_8, int shift = 0);//参数1(img):待绘制的图像
//参数2(center):圆心坐标
//参数3(color):圆的半径
//参数4(color):椭圆颜色
//参数5(thickness ):画笔线宽
//参数6(lineType ):画笔线类型     
//参数7(shift ):绘制精度,默认为0(单精度)


注:thickness =-1,为实心圆

7,fillPoly:画多边形


两个重载函数
函数1:

CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,const Scalar& color, int lineType = LINE_8, int shift = 0,Point offset = Point() );//参数1(img):待绘制的图像
//参数2(pts):顶点集
//参数3(color):椭圆颜色
//参数4(lineType ):画笔线类型   
//参数5(shift ):绘制精度,默认为0(单精度)
//参数6(offset ):绘制的偏移量,默认为(0,0)

函数2:

CV_EXPORTS void fillPoly(InputOutputArray img, const Point** pts,const int* npts, int ncontours,const Scalar& color, int lineType = LINE_8, int shift = 0,Point offset = Point() );//参数1(img):待绘制的图像
//参数2(pts):顶点集
//参数3(npts):多边形顶点数
//参数4(ncontours):多边形数量
//参数5(color):椭圆颜色
//参数6(lineType ):画笔线类型   
//参数7(shift ):绘制精度,默认为0(单精度)
//参数8(offset ):绘制的偏移量,默认为(0,0)

8,line:画线

CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,int thickness = 1, int lineType = LINE_8, int shift = 0);
//参数1(img):待绘制的图像
//参数2(pt1):线起点
//参数3(pt2):线终点
//参数4(color):线颜色
//参数5(thickness ):画笔线宽
//参数6(lineType ):画笔线类型     
//参数7(shift ):绘制精度,默认为0(单精度)

9,LUT:查表


查表变换,用于大数据图像的图元进行批量操作,牺牲空间换取时间

CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
//参数1(src):原图
//参数2(lut):表
//参数3(dst):处理后的图

 10,getTickCount:获取电脑当前时钟数

CV_EXPORTS_W int64 getTickCount();

11,getTickFrequency:获取CPU,1秒的走过的时钟周期

CV_EXPORTS_W double getTickFrequency();//double start = cv::getTickCount();
//double interval = cv::getTickCount() - start;
//double second=interval  / cv::getTickFrequency(); // 结果单位:秒

12,addWeighted:图像混合

CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,double beta, double gamma, OutputArray dst, int dtype = -1);
//参数1(src1):图像1
//参数2(alpha):图像1权重
//参数3(src2):图像2
//参数4(beta):图像2权重
//参数5(gamma):加到权重总和上的值
//参数6(dst):处理后图像
//参数7(dtype ):图像深度,-1和图像1的深度相同
//输出图像图元i,dst[i] = src1[i] * alpha + src2[i ] * beta + gamma;


注:图像1(src1)和图像2(src2)类型和尺寸需要相同

13,split:通道分离

CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);//参数1(m):多通道图像
//参数2(mv):单通道图像数组

14,merge:通道合并

CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst)//参数1(mv):单通道图像数组
//参数2(m):多通道图像

15,dft:离散傅里叶变换

CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);//参数1(src):原图
//参数2:处理图像
//参数3:转换标志
//参数4:非零行

注:**DftFlags** 参数3(flags)枚举定义

enum DftFlags {DFT_INVERSE        = 1,DFT_SCALE          = 2,DFT_ROWS           = 4,DFT_COMPLEX_OUTPUT = 16,DFT_REAL_OUTPUT    = 32,DFT_COMPLEX_INPUT  = 64,DCT_INVERSE        = DFT_INVERSE,DCT_ROWS           = DFT_ROWS
};/*
DFT_INVERSE: 这个值用于指示需要进行逆DFT变换,逆DFT变换是将频域表示转换回时域表示的过程。
DFT_SCALE: 这个值用于指示在进行DFT变换后需要对输出进行缩放。在某些情况下,为了保持数据的精度,需要在变换后对输出进行缩放,输出的结果都会以l/N进行缩放,通常会结合DFT_INVERSE一起使用。
DFT_ROWS: 这个值用于指示在进行DFT变换时,按行进行运算。对输入矩阵的每行进行正向或反向的变换,此标识符可以在处理多种矢量的时候用于减小资源开销,这些处理常常是三维或高维变换等复杂操作
DFT_COMPLEX_OUTPUT: 这个值用于指示DFT变换的输出结果是复数形式的。在频域变换中,输出通常可以是实数或复数形式。
DFT_REAL_OUTPUT: 这个值用于指示DFT变换的输出结果是实数形式的。在某些情况下,我们可能只关心频域表示的实部,而不需要虚部,这时可以使用这个选项。
DFT_COMPLEX_INPUT: 这个值用于指示输入给DFT变换的数据是复数形式的。在频域变换中,输入数据可以是实数或复数形式。
DCT_INVERSE: 这个值与DFT_INVERSE相同,用于指示需要进行逆DCT变换。逆DCT变换是将频域表示转换回时域表示的过程。
DCT_ROWS: 这个值与DFT_ROWS相同,用于指示在进行DCT变换时,按行进行运算。
*/

16,getOptimalDFTSize:获取傅里叶最佳尺寸

CV_EXPORTS_W int getOptimalDFTSize(int vecsize);//参数1(vecsize):尺寸,即图片的rows,cols
//离散傅里叶变换的运行速度与图片的尺寸有很大关系。当图像的尺寸是 2、 3、 5的整数倍时,计算速度最快。

17,copyMakeBorder:扩展图像边界

CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst,int top, int bottom, int left, int right,int borderType, const Scalar& value = Scalar() );//参数1(src):原图
//参数2(dst):处理后图
//参数3(top):原图像上方扩充的像素
//参数4(bottom):原图像下方扩充的像素
//参数5(left):原图像左方扩充的像素
//参数6(right):原图像右方扩充的像素
//参数7(borderType):边界类型
//参数8(value):当 borderType取值为 BORDER CONSTANT时,这个参数表示边界值

18,magnitude:计算二位矢量幅值

dst(i)=\sqrt{x(i)^2+y(i)^2}

CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);//参数1(x):矢量浮点型X坐标值,实部
//参数1(y):矢量浮点型Y坐标值,虚部
//参数1(magnitude):输出的幅值

19,normalize:矩阵归一化

normalize函数的作用是将数据归一化到指定的范围,将数据的分布变得更加集中,减少数据的波动性,同时也可以提高模型的训练速度和准确性

CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());//参数1(src):原矩阵
//参数2(dst):处理后的矩阵
//参数3(alpha):归一化的参数
//参数4(beta):归一化的参数
//参数5(norm_type):归一化类型
//参数6(dtype):矩阵类型
//参数7(mask):掩膜
enum NormTypes {NORM_INF       = 1,NORM_L1        = 2,NORM_L2        = 4,NORM_L2SQR     = 5,NORM_HAMMING   = 6,NORM_HAMMING2  = 7,NORM_TYPE_MASK = 7, NORM_RELATIVE  = 8, NORM_MINMAX    = 32 };NORM_INF: 这可能是无穷范数(L-inf norm),在数学中常用于量化向量或矩阵的“大小”。对于向量,它计算的是向量元素绝对值的最大值;对于矩阵,它计算的是矩阵中所有子矩阵元素绝对值的最大值。
NORM_L1: 这可能是L1范数(L-1 norm),它计算的是向量元素绝对值的总和。
NORM_L2: 这是L2范数(L-2 norm),也称为欧几里得范数,它计算的是向量元素平方和的平方根。
NORM_L2SQR:这可能是L2平方范数(L-2 squared norm),它计算的是向量元素平方和。
NORM_HAMMING 和 NORM_HAMMING2:可能是某种类型的哈明范数(Hamming norm),它通常用于量化矢量或矩阵中非零元素的数量。
NORM_TYPE_MASK:这可能是一个位掩码,用于选择上述范数类型的一部分。
NORM_RELATIVE:这可能是一个标志,表示使用相对范数(relative norm),即根据向量的大小来计算范数。
NORM_MINMAX:这可能是最小最大范数(min-max norm),它把向量映射到0和1之间。

20,blur:均值滤波

CV_EXPORTS_W void blur( InputArray src, OutputArray dst,Size ksize, Point anchor = Point(-1,-1),int borderType = BORDER_DEFAULT );//参数1(src):原图
//参数2(dst):处理后的图像
//参数3(ksize):核的尺寸,正奇数
//参数4(anchor):锚点,默认值 Point(-l-l)表示这个锚点在核的中心
//参数5(borderType):边框类型

21,boxFilter:方框滤波

CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,Size ksize, Point anchor = Point(-1,-1),bool normalize = true,int borderType = BORDER_DEFAULT );//参数1(src):原图
//参数2(dst):处理后的图像
//参数3(ddepth):处理后图像深度,-1代表使用原图深度
//参数4(ksize):核的尺寸,正奇数
//参数5(anchor):锚点,默认值 Point(-l-l)表示这个锚点在核的中心
//参数6(normalize):归一化处理
//参数7(borderType):边框类型

22,GaussianBlur:高斯滤波

CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,double sigmaX, double sigmaY = 0,int borderType = BORDER_DEFAULT );//参数1(src):原图
//参数2(dst):处理后图像
//参数3(ksize):内核大小,正奇数
//参数4(sigmaX):X方向上的高斯核标准偏差
//参数5(sigmaY):Y方向上的高斯核标准偏差
//参数6(borderType ):边框类型

 23,medianBlur:中值滤波

CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );//参数1(src):原图
//参数2(dst):处理后图像
//参数3(ksize):内核大小,正奇数

24,bilateralFilter:双边滤波

CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,double sigmaColor, double sigmaSpace,int borderType = BORDER_DEFAULT );//参数1(src):原图
//参数2(dst):处理后图像
//参数3(d):表示在过滤过程中每个像素邻域的直径
//参数4(sigmaColor):颜色空间滤波器的sigma值。这个参数的值越大,就表明该像素邻域内有越宽广的颜色会被混合到一起,产生较大的半相等颜色区域
//参数5(sigmaSpace):坐标空间中滤波器的sigma值,坐标空间的标注方差。它的数值越大,意味着越远的像素会相互影响,从而使更大的区域中足够相似的颜色获取相同的颜色。当 d>0时, d指定了邻域大小且与sigmaSpace无关。否则, d正比于sigmaSpace
//参数6(borderType):边框类型

25,dilate:膨胀(形态学滤波)

CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,Point anchor = Point(-1,-1), int iterations = 1,int borderType = BORDER_CONSTANT,const Scalar& borderValue = morphologyDefaultBorderValue() );//参数1(src):原图
//参数2(dst):处理后图像
//参数3(kernel):内核,可以是正方向或者矩形,可以通过cv2.getStructuringElement()函数创建
//参数4(anchor ):锚点
//参数5(iterations):迭代次数,如连续膨胀几次
//参数6(borderType ):边框类型
//参数7(borderValue ):边界值

26,getStructuringElement:获取内核

CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));//参数1(shape):设定卷积核的形状,有三个可选值:MORPH_RECT(返回矩形卷积核)、MORPH_CROSS(返回十字形卷积核)和MORPH_ELLIPSE(返回椭圆形卷积核)
//参数2(ksize):表示卷积核有x行,y列
//参数3(anchor ):设定锚点的位置,一般设为(-1,-1),表示锚点位于核中心。

注:参数1(shape)枚举定义

enum MorphShapes {MORPH_RECT    = 0, MORPH_CROSS   = 1, MORPH_ELLIPSE = 2 
};

27,erode:腐蚀(形态学滤波)

CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,Point anchor = Point(-1,-1), int iterations = 1,int borderType = BORDER_CONSTANT,const Scalar& borderValue = morphologyDefaultBorderValue() );//参数1(src):原图
//参数2(dst):处理后图像
//参数3(kernel):内核,可以是正方向或者矩形,可以通过cv2.getStructuringElement()函数创建
//参数4(anchor ):锚点
//参数5(iterations):迭代次数,如连续腐蚀几次
//参数6(borderType ):边框类型
//参数7(borderValue ):边界值

28,morphologyEx:形态学滤波

CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,int op, InputArray kernel,Point anchor = Point(-1,-1), int iterations = 1,int borderType = BORDER_CONSTANT,const Scalar& borderValue = morphologyDefaultBorderValue() );//参数1(src):原图
//参数2(dst):处理后图像
//参数3(op):形态学操作的类型,可以是腐蚀、膨胀、开运算、闭运算、顶帽、黑帽等
//参数4(kernel):内核,可以是正方向或者矩形,可以通过cv2.getStructuringElement()函数创建
//参数5(anchor ):锚点
//参数6(iterations):迭代次数
//参数7(borderType ):边框类型
//参数8(borderValue ):边界值

注:参数3(op)枚举定义

enum MorphTypes{MORPH_ERODE    = 0, MORPH_DILATE   = 1, MORPH_OPEN     = 2, MORPH_CLOSE    = 3, MORPH_GRADIENT = 4, MORPH_TOPHAT   = 5, MORPH_BLACKHAT = 6, MORPH_HITMISS  = 7  
};/*MORPH_ERODE    //腐蚀MORPH_DILATE   //膨胀MORPH_OPEN     //开运算MORPH_CLOSE    //闭运算MORPH_GRADIENT //梯度MORPH_TOPHAT   //顶帽MORPH_BLACKHAT //白帽MORPH_HITMISS  //Hit-or-Miss 运算,是一种特殊的形态学运算,通常用于检测满足特定形状的物体
*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/159971.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

虚拟机创建与连接的详细步骤

文章目录 什么是虚拟机&#xff1f;步骤1: 选择虚拟化软件1.1 VirtualBox1.2 VMware Workstation1.3 VMware Player1.4 Hyper-V 步骤2: 创建虚拟机2.1 打开虚拟化软件2.2 创建新虚拟机2.3 配置虚拟机2.4 安装操作系统2.5 启动虚拟机 步骤3: 连接虚拟机3.1 图形用户界面 (GUI)3.…

【数据结构】树家族

目录 树的相关术语树家族二叉树霍夫曼树二叉查找树 BST平衡二叉树 AVL红黑树伸展树替罪羊树 B树B树B* 树 当谈到数据结构中的树时&#xff0c;我们通常指的是一种分层的数据结构&#xff0c;它由节点&#xff08;nodes&#xff09;组成&#xff0c;这些节点之间以边&#xff08…

一篇文章带你学会MybatisPlus~

实现MybatisPlus的简单使用&#xff1a; 数据库准备部分&#xff1a; //创建名为mybatisPlus的数据库 create database mybatisPlus;//使用该数据库 use mybatisPlus;//创建user表 CREATE TABLE user( id bigint(20) NOT NULL COMMENT 主键ID , name varchar(30) DEFAULT NUL…

【多线程】龟兔赛跑

package org.example;public class Race implements Runnable {//胜利者private static String winner;Overridepublic void run() {for(int i0;i<100;i){boolean flag gameOver(i);//如果flag>100,结束比赛if(flag){break;}System.out.println(Thread.currentThread().g…

el-table 列分页

<template><div><el-table:data"tableData":key"tampTime"style"width: 100%"><el-table-columnprop"name"label"姓名"width"180"></el-table-column><el-table-columnprop&quo…

QT学习之QT概述

1.1 什么是QT&#xff1f; Qt是一个跨平台的C图形用户界面应用程序框架。 QT特点&#xff1a; 跨平台&#xff0c;几乎支持所有的平台接口简单&#xff0c;容易上手&#xff0c;学习QT框架对学习其他框架有参考意义。一定程度上简化了内存回收机制开发效率高&#xff0c;能够…

22款奔驰S400L升级原厂 360全景影像 高清环绕的视野

您是否经历过这种场面呢&#xff1f; 停车位&#xff0c;狭窄障碍停车困难 避免盲区&#xff0c;倒车盲区危及生命安全 狭窄路段&#xff0c;无法判断是否安全通过 视角盲区&#xff0c;小孩站在视野盲区看不到 360度无缝3D全车可见&#xff0c;解决各个视角盲区&#xff…

【leetcode】26. 删除有序数组中的重复项(图解)

目录 1. 思路&#xff08;图解&#xff09;2. 代码 题目链接&#xff1a; leetcode 26. 删除有序数组中的重复项 题目描述&#xff1a; 注意返回的是去重后的数组长度&#xff0c;但是输出的是去重后的数组元素。 1. 思路&#xff08;图解&#xff09; 思路&#xff1a;快慢…

axios 全局错误处理和请求取消

这两个功能都是用拦截器实现。 前景提要&#xff1a; ts 简易封装 axios&#xff0c;统一 API 实现在 config 中配置开关拦截器 全局错误处理 在构造函数中&#xff0c;添加一个响应拦截器即可。在构造函数中注册拦截器的好处是&#xff0c;无论怎么实例化封装类&#xff0c…

2023年测试如果想拿到心怡的offer必会的12大技能

01 业务熟悉 &#x1f3af; 1&#xff1a;熟悉本系统 测试人员参与测试的系统的各种业务场景&#xff0c;必须做到精熟 。一旦需求有改动&#xff0c;可以清楚快速的知道上下文。同时可以清楚的知道哪些点是需要重点测试的。 &#x1f3af; 2&#xff1a;熟悉跟本系统有通讯…

设计模式—结构型模式之适配器模式

设计模式—结构型模式之适配器模式 将一个接口转换成客户希望的另一个接口&#xff0c;适配器模式使接口不兼容的那些类可以一起工作&#xff0c;适配器模式分为类结构型模式&#xff08;继承&#xff09;和对象结构型模式&#xff08;组合&#xff09;两种&#xff0c;前者&a…

【蓝桥杯选拔赛真题10】C++求奇数和 青少年组蓝桥杯C++选拔赛真题 STEMA比赛真题解析

目录 C/C++求奇数和 一、题目要求 1、编程实现 2、输入输出 二、算法分析 <