阿里云安全恶意程序检测

阿里云安全恶意程序检测

  • 赛题理解
    • 赛题介绍
      • 赛题说明
      • 数据说明
      • 评测指标
    • 赛题分析
      • 数据特征
      • 解题思路
  • 数据探索
    • 数据特征类型
    • 数据分布
      • 箱型图
    • 变量取值分布
      • 缺失值
      • 异常值
      • 分析训练集的tid特征
      • 标签分布
      • 测试集数据探索同上
    • 数据集联合分析
      • file_id分析
      • API分析
  • 特征工程与基线模型
    • 构造特征与特征选择
      • 基于数据类型的方法
      • 基于多分析视角的方法
      • 特征选择
    • 构造线下验证集
      • 评估穿越
      • 训练集和测试集的特征性差异
      • 训练集和测试集是分布差异性
    • 基线模型
      • 特征工程
      • 基线构建
      • 特征重要性分析
      • 模型测试

赛题理解

赛题介绍

赛题说明

本题目提供的数据来自经过沙箱程序模拟运行后的API指令序列,全为Windows二进制可执行程序,经过脱敏处理:样本数据均来自互联网,其中恶意文件的类型有感染型病毒、木马程序、挖矿程序、DDoS 木马、勒索病毒等,数据总计6亿条。

注:什么是沙箱程序?
在计算机安全中,沙箱(Sandbox)是一种用于隔离正在运行程序的安全机制,通常用于执行未经测试或者不受信任的程序或代码,它会为待执行的程序创建一个独立的执行环境,内部程序的执行不会影响到外部程序的运行。

数据说明

在这里插入图片描述

评测指标

在这里插入图片描述
需特别注意,log 对于小于1的数是非常敏感的。比如log0.1和log0.000 001的单个样本的误差为10左右,而log0.99和log0.95的单个误差为0.1左右。

logloss和AUC的区别:AUC只在乎把正样本排到前面的能力,logloss更加注重评估的准确性。如果给预测值乘以一个倍数,则AUC不会变,但是logloss 会变。

赛题分析

数据特征

在这里插入图片描述
本赛题的特征主要是API接口的名称,这是融合时序与文本的数据,同时接口名称基本表达了接口用途。因此,最基本、最简单的特征思路是对所有API数据构造CountVectorizer特征

说明: CountVectorizer 是属于常见的特征数值计算类,是一个文本特征提取方法。对于每一个训练文本,它只考虑每种词汇在该训练文本中出现的频率。

解题思路

本赛题根据官方提供的每个文件对API的调用顺序及线程的相关信息按文件进行分类,将文件属于每个类的概率作为最终的结果进行提交,并采用官方的logloss作为最终评分,属于典型的多分类问题

数据探索

数据特征类型

train.info()
train.head(5)
train.describe()

数据分布

箱型图

#使用箱型图查看单个变量的分布情况。
#取前10000条数据绘制tid变量的箱型图
#os:当数据量太大时,变量可视化取一部分
sns.boxplot(x = train.iloc[:10000]["tid"])

在这里插入图片描述

变量取值分布

#用函数查看训练集中变量取值的分布
train.nunique()

缺失值

#查看缺失值
train.isnull().sum()

异常值

#异常值:分析训练集的index特征
train['index'].describe()

分析训练集的tid特征

#分析训练集的tid特征
train['tid'].describe()

标签分布

#统计标签取值的分布情况
train['label'].value_counts()

直观化:

train['label'].value_counts().sort_index().plot(kind = 'bar')

在这里插入图片描述

train['label'].value_counts().sort_index().plot(kind = 'pie')

在这里插入图片描述

测试集数据探索同上

数据集联合分析

file_id分析

#对比分析file_id变量在训练集和测试集中分布的重合情况:
train_fileids = train['file_id'].unique()
test_fileids = test['file_id'].unique()
len(set(train_fileids) - set(test_fileids))

API分析

#对比分析API变量在训练集和测试集中分布的重合情况
train_apis = train['api'].unique()
test_apis = test['api'].unique()
set(set(test_apis) - set(train_apis))

特征工程与基线模型

构造特征与特征选择

基于数据类型的方法

在这里插入图片描述

基于多分析视角的方法

这是最常见的一种特征构造方法,在所有的基于table 型(结构化数据)的比赛中都会用到。

我们以用户是否会在未来三天购买同一物品为例,来说明此类数据的构建角度:用户长期购物特征,用户长期购物频率;用户短期购物特征,用户近期购物频率;物品受欢迎程度,该物品最近受欢迎程度;

用户对此类产品的喜好特征:用户之前购买该类/该商品的频率等信息;

时间特征:是否到用户发工资的时间段:商品是否为用户的必备品,如洗漱用品、每隔多长时间必买等。

特征选择

特征选择主要包含过滤法、包装法和嵌入法三种,前面已经介绍过。

构造线下验证集

在数据竞赛中,为了防止选手过度刷分和作弊,每日的线上提交往往是有次数限制的。因此,线下验证集的构造成为检验特征工程、模型是否有效的关键。在构造线下验证集时,我们需要考虑以下几个方面的问题。

评估穿越

评估穿越最常见的形式是时间穿越和会话穿越两种。

1.时间穿越

例1: 假设我们需要预测用户是否会去观看视频B,在测试集中需要预测用户8月8日上午10:10点击观看视频B的概率,但是在训练集中已经发现该用户8月8日上午10:09在观看视频A,上午10:11 也在观看视频A,那么很明显该用户就有非常大的概率不看视频B,通过未来的信息很容易就得出了该判断。

例2: 假设我们需要预测用户9月10日银行卡的消费金额,但是在训练集中已经出现了该用户银行卡的余额在9月9日和9月11日都为0,那么我们就很容易知道该用户在9月10日的消费金额是0,出现了时间穿越的消息。

2.会话穿越

以电商网站的推荐为例,当用户在浏览某一个商品时,某个推荐模块会为他推荐多个商品进行展现,用户可能会点击其中的一个或几个。为了描述方便,我们将这些一 次展现中产生的,点击和未点击的数据合起来称为一 次会话(不同于计算机网络中会话的概念)。在上面描述的样本划分方法中,一次会话中的样本可能有一部分被划分到训练集,另一部分被划分到测试集。这样的行为,我们称之为会话穿越。

会话穿越的问题在于,由于一个会话对应的是
一个用户在一次展现中的行为,因此存在较高的相关性,穿越会带来类似上面提到的用练习题考试的问题。此外,会话本身是不可分割的,也就是说,在线上使用模型时,不可能让你先看到一次会话的一部分,然后让你预测剩余的部分,因为会话的展现结果是一次性产生的,一旦产生后,模型就已经无法干预展现的结果了。

3.穿越本质

穿越本质上是信息泄露的问题。无论时间穿越,还是会话穿越,其核心问题都是训练数据中的信息以不同方式、不同程度泄露到了测试数据中。.

训练集和测试集的特征性差异

我们用训练集训练模型,当训练集和测试集的特征分布有差异时,就容易造成模型偏差,导致预测不准确。常见的训练集和测试集的特征差异如下:

数值特征:训练集和测试集的特征分布交叉部分极小;
在这里插入图片描述
类别特征:测试集中的特征大量未出现在训练集中。例如,在微软的一场比赛中,测试集中的很多版本未出现在训练集中。

在某些极端情况下,训练集中极强的特征会在测试集中全部缺失。

训练集和测试集是分布差异性

训练集和测试集的分布差异性的判断步骤如下:
将训练集的数据标记为label=1,将测试集的数据标记为label= 0。对训练集和测试集做5折的auc交叉验证。如果auc在0.5附近,那么则说明训练集和测试集的分布差异不大:如果auc在0.9附近,那么则说明训练集和测试集的分布差异很大。

基线模型

导包 -> 读取数据 -> 特征工程

特征工程

·利用count()函数和nunique()函数生成特征:反应样本调用api,tid,index的频率信息


def simple_sts_features(df):simple_fea = pd.DataFrame()simple_fea['file_id'] = df['file_id'].unique()simple_fea = simple_fea.sort_values('file_id')df_grp = df.groupby('file_id')simple_fea['file_id_api_count'] = df_grp['api'].count().valuessimple_fea['file_id_api_nunique'] = df_grp['api'].nunique().valuessimple_fea['file_id_tid_count'] = df_grp['tid'].count().valuessimple_fea['file_id_tid_nunique'] = df_grp['tid'].nunique().valuessimple_fea['file_id_index_count'] = df_grp['index'].count().valuessimple_fea['file_id_index_nunique'] = df_grp['index'].nunique().valuesreturn simple_fea

·利用main(),min(),std(),max()函数生成特征:tid,index可认为是数值特征,可提取对应的统计特征。


def simple_numerical_sts_features(df):simple_numerical_fea = pd.DataFrame()simple_numerical_fea['file_id'] = df['file_id'].unique()simple_numerical_fea = simple_numerical_fea.sort_values('file_id')df_grp = df.groupby('file_id')simple_numerical_fea['file_id_tid_mean'] = df_grp['tid'].mean().valuessimple_numerical_fea['file_id_tid_min'] = df_grp['tid'].min().valuessimple_numerical_fea['file_id_tid_std'] = df_grp['tid'].std().valuessimple_numerical_fea['file_id_tid_max'] = df_grp['tid'].max().valuessimple_numerical_fea['file_id_index_mean'] = df_grp['index'].mean().valuessimple_numerical_fea['file_id_index_min'] = df_grp['index'].min().valuessimple_numerical_fea['file_id_index_std'] = df_grp['index'].std().valuessimple_numerical_fea['file_id_index_max'] = df_grp['index'].max().valuesreturn simple_numerical_fea

·利用定义的特征生成函数,并生成训练集和测试集的统计特征。

%%time
#统计api,tid,index的频率信息的特征统计
simple_train_fea1 = simple_sts_features(train)
%%time
simple_test_fea1 = simple_sts_features(test)
%%time
#统计tid,index等数值特征的特征统计
simple_train_fea2 = simple_numerical_sts_features(train)
%%time
simple_test_fea2 = simple_numerical_sts_features(test)

基线构建

获取标签:

#获取标签
train_label = train[['file_id','label']].drop_duplicates(subset=['file_id','label'],keep='first')
test_submit = test[['file_id']].drop_duplicates(subset=['file_id'],keep='first')

训练集和测试集的构建:

#训练集和测试集的构建
train_data = train_label.merge(simple_train_fea1,on = 'file_id',how = 'left')
train_data = train_data.merge(simple_train_fea2,on = 'file_id',how = 'left')test_submit = test_submit.merge(simple_test_fea1,on = 'file_id',how = 'left')
test_submit = test_submit.merge(simple_test_fea2,on = 'file_id',how = 'left')

因为本赛题给出的指标和传统的指标略有不同,所以需要自己写评估指标,这样方便对比线下与线上的差距,以判断是否过拟合、是否出现线上线下不一致的问题等。
在这里插入图片描述

#关于LGB的自定义评估指标的书写
def lgb_logloss(preds,data):labels_ = data.get_label()classes_ = np.unique(labels_)preds_prob = []for i in range(len(classes_)):preds_prob.append(preds[i * len(labels_):(i+1)*len(labels_)])preds_prob_ = np.vstack(preds_prob)loss = []for i in range(preds_prob_.shape[1]):  #样本个数sum_ = 0for j in range(preds_prob_.shape[0]):  #类别个数pred = preds_prob_[j,i]  #第i个样本预测为第j类的概率if j == labels_[i]:sum_ += np.log(pred)else:sum_ += np.log(1 - pred)loss.append(sum_)return 'loss is: ',-1 * (np.sum(loss) / preds_prob_.shape[1]),False

线下验证:

train_features = [col for col in train_data.columns if col not in ['label','file_id']]
train_label = 'label'

使用5折交叉验证,采用LGB模型:

%%timefrom sklearn.model_selection import StratifiedKFold,KFold
params = {'task':'train','num_leaves':255,'objective':'multiclass','num_class':8,'min_data_in_leaf':50,'learning_rate':0.05,'feature_fraction':0.85,'bagging_fraction':0.85,'bagging_freq':5,'max_bin':128,'random_state':100
}folds = KFold(n_splits=5,shuffle=True,random_state = 15)  #n_splits = 5定义5折
oof = np.zeros(len(train))predict_res = 0
models = []
for fold_, (trn_idx,val_idx) in enumerate(folds.split(train_data)):print("fold n°{}".format(fold_))trn_data = lgb.Dataset(train_data.iloc[trn_idx][train_features],label = train_data.iloc[trn_idx][train_label].values)val_data = lgb.Dataset(train_data.iloc[val_idx][train_features],label = train_data.iloc[val_idx][train_label].values)clf = lgb.train(params,trn_data,num_boost_round = 2000,valid_sets = [trn_data,val_data],verbose_eval = 50,early_stopping_rounds = 100,feval = lgb_logloss)models.append(clf)

特征重要性分析

#特征重要性分析
feature_importance = pd.DataFrame()
feature_importance['fea_name'] = train_features
feature_importance['fea_imp'] = clf.feature_importance()
feature_importance = feature_importance.sort_values('fea_imp',ascending = False)
plt.figure(figsize = [20,10,])
sns.barplot(x = feature_importance['fea_name'],y = feature_importance['fea_imp'])

在这里插入图片描述
由运行结果可以看出:

(1) API的调用次数和API的调用类别数是最重要的两个特征,即不同的病毒常常会调用不同的API,而且由于有些病毒需要复制自身的原因,因此调用API的次数会明显比其他不同类别的病毒多。

(2)第三到第五强的都是线程统计特征,这也较为容易理解,因为木马等病毒经常需要通过线程监听一些内容,所以在线程等使用上会表现的略有不同。

模型测试

#模型测试
pred_res = 0
fold = 5
for model in models:pred_res += model.predict(test_submit[train_features]) * 1.0 /fold
test_submit['prob0'] = 0
test_submit['prob1'] = 0
...
test_submit[['prob0','prob1','prob2','prob3','prob4','prob5','prob6','prob7']] = pred_res
test_submit[['file_id','prob0','prob1','prob2','prob3','prob4','prob5','prob6','prob7']].to_csv('baseline.csv',index = None)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161333.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CVE-2023-34040 Kafka 反序列化RCE

漏洞描述 Spring Kafka 是 Spring Framework 生态系统中的一个模块,用于简化在 Spring 应用程序中集成 Apache Kafka 的过程,记录 (record) 指 Kafka 消息中的一条记录。 受影响版本中默认未对记录配置 ErrorHandlingDeserializer,当用户将容…

Pycharm 对容器中的 Python 程序断点远程调试

pycharm如何连接远程服务器的docker容器有两种方法: 第一种:pycharm通过ssh连接已在运行中的docker容器 第二种:pycharm连接docker镜像,pycharm运行代码再自动创建容器 本文是第一种方法的教程,第二种请点击以上的链接…

Docker与微服务实战——基础篇

Docker与微服务实战——基础篇 第一章 Docker 简介1.1 docker 理念1.2 容器与虚拟机比较 第二章 Docker 安装2.1 前提说明2.2 Docker的基本组成2.2.1 镜像(image)2.2.2 容器(container)2.2.3 仓库(repository&#xff…

看!MySQL 8.2 数据库支持读写分离啦!

更多文章,欢迎关注作者公众号,欢迎一起交流。 MySQL 8.2.0创新版本已于2023-10-17发布,MySQL Router 8.2 支持数据库的读/写分离,这里将在InnoDB Cluster集群中演示数如何进行读写分离,本篇内容包括:MySQL …

Python基础入门例程50-NP50 程序员节(循环语句)

最近的博文: Python基础入门例程49-NP49 字符列表的长度-CSDN博客 Python基础入门例程48-NP48 验证登录名与密码(条件语句)-CSDN博客 Python基础入门例程47-NP47 牛牛的绩点(条件语句)-CSDN博客 目录 最近的博文&a…

[BUUCTF NewStar 2023] week5 Crypto/pwn

最后一周几个有难度的题 Crypto last_signin 也是个板子题,不过有些人存的板子没到,所以感觉有难度,毕竟这板子也不是咱自己能写出来的。 给了部分p, p是1024位给了922-101位差两头。 from Crypto.Util.number import * flag b?e 655…

虚幻C+++基础 day2

角色移动与视角控制 Character类与相关API 创建Character子类MainPlayer.h // Fill out your copyright notice in the Description page of Project Settings.#pragma once#include "CoreMinimal.h" #include "GameFramework/Character.h" #include &q…

Linux学习第32天:Linux INPUT 子系统实验(一):接纳

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 题目中用了“接纳”俩字。其实学习就是一个接纳的过程。接纳新的知识,从而转化为自己知识宝库的一部分。那今天学习的input子系统和今天的主题接纳有…

C++入门指南:string类文档详细解析(非常经典,建议收藏)

C入门指南:string类 一、 string类解读二、 string类的常用接口说明2.1 string类对象的常见构造2.2 string类对象的容量操作2.3 string类对象的访问及遍历操作2.4 string类对象的修改操作2.5 string类非成员函数 一、 string类解读 string类文档 具体如下&#xff…

论文阅读——What Can Human Sketches Do for Object Detection?(cvpr2023)

论文:https://openaccess.thecvf.com/content/CVPR2023/papers/Chowdhury_What_Can_Human_Sketches_Do_for_Object_Detection_CVPR_2023_paper.pdf 代码:What Can Human Sketches Do for Object Detection? (pinakinathc.me) 一、 Baseline SBIR Fram…

eBPF BCC开源工具简介

目录 官方链接 编译安装 ubuntu版本 安装 examples tools hello_world.py demo 运行报错 网上目前的解决办法 错误分析过程 python版本检测 libbcc库检查 python3 bcc库检查 正常输出 监控进程切换 运行输出 监控CPU直方图 缓存命中率监控:caches…

uni-app学习笔记

目录 一、前期准备 1、项目认识 2、pages.json基本配置 3、创建页面 二、tabBar 1、获取图标 2、代码配置 三、基础认识 1、页面生命周期 2、App.vue应用生命周期 四、基础组件 1、scroll-view可滚动视图区域 2、提示框 3、swiper滑块视图容器 4、form表单组件 一…