NeRF-SLAM部署运行(3060Ti)

记录在部署运行期间遇到的一些问题,分享给大家~

一、环境

RTX 3060 Ti、8G显存、Ubuntu18.04

二、部署

1. 下载代码
git clone https://github.com/jrpowers/NeRF-SLAM.git --recurse-submodules
git submodule update --init --recursive
cd thirdparty/instant-ngp/ && git checkout feature/nerf_slam

这里clone的不是原作者的code,而是jrpowers的​ code,12 commits ahead, 2 commits behind ToniRV:master ​,因为官方给的代码在安装部署过程中遇到了不少问题,所以先跳过,给大家介绍成功的流程,下文会介绍部分官方代码在部署过程中遇到的问题及对应的解决方法。

2. 安装CUDA 11.7 和PyTorch

这里我用的是anaconda,如何使用conda请参照ubuntu下anaconda的安装、配置与使用_ubuntu怎么使用anaconda_zllz0907的博客-CSDN博客,


conda create -n nerf python=3.9
conda install -c "nvidia/label/cuda-11.7.0" cuda-toolkit
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117
官方安装的是CUDA 11.3和torch 1.12.1,后来试了也是没问题的。
3. 安装requirements
pip install -r requirements.txt
pip install -r ./thirdparty/gtsam/python/requirements.txt
4. 编译ngp(确保cmake版本>3.22)
cmake ./thirdparty/instant-ngp -B build_ngp
cmake --build build_ngp --config RelWithDebInfo -j
5. 编译gtsam

官方代码在编译gtsam时大概率会遇到问题

cmake ./thirdparty/gtsam -DGTSAM_BUILD_PYTHON=1 -B build_gtsam 
cmake --build build_gtsam --config RelWithDebInfo -j
cd build_gtsam
make python-install

如果设备性能有限,或者编译时遇到cplusplus internal相关的问题,将上述第二行编译指令后的-j改为-j8或者更小的-j6,降低在编译时的并行数量。

6. 安装
python setup.py install

三、运行

1. 下载数据集
./scripts/download_replica_sample.bash
2. 运行
python ./examples/slam_demo.py --dataset_dir=./datasets/Replica/office0 --dataset_name=nerf --buffer=100 --slam --parallel_run --img_stride=2 --fusion='nerf' --multi_gpu --gui

注意download_replica_sample.bash中的数据下载地址是Datasets,而运行地址是小写字母datasets,需改成一致。

如果运行时出现检测不到CUDA设备或者无gui画面时,错误如下:

RuntimeError: Could not allocate memory: 
/thirdparty/instant-ngp/dependencies/tiny-cuda-nn/include/tiny-cuda-nn/gpu_memory.h:123 cudaMalloc(&rawptr, n_bytes+DEBUG_GUARD_SIZE*2) 
failed with error no CUDA-capable device is detected

将上述运行指令中的--multi_gpu选项去掉即可。

3. 其他模式运行

跳过SLAM,用位姿真值和深度运行。3060Ti 8G现存可以运行这种模式

./scripts/download_cube.bash 
python ./examples/slam_demo.py --dataset_dir=./datasets/nerf-cube-diorama-dataset/room --dataset_name=nerf --buffer=100 --img_stride=1 --fusion='nerf' --gui

运行画面如下:

四、官方代码问题解决记录

1. gtsam编译问题

在执行cmake --build build_gtsam --config RelWithDebInfo后遇到

#0 3.429 pyparsing.exceptions.ParseException: Expected string_end, found 'namespace'  (at char 1249), (line:46, col:1)
#0 3.450 make[2]: *** [python/CMakeFiles/pybind_wrap_gtsam_unstable.dir/build.make:76: python/gtsam_unstable.cpp] Error 1
#0 3.450 make[1]: *** [CMakeFiles/Makefile2:32340: python/CMakeFiles/pybind_wrap_gtsam_unstable.dir/all] Error 2

解决:

将thirdparty中的gtsam代码替换为https://github.com/ToniRV/gtsam-1下的代码,重新执行编译步骤即可。

2. 路径问题

download_replica_sample.bash中的数据下载地址是Datasets,而运行地址是小写字母datasets.

3. 运行时报错
 File "/NeRF-SLAM/./examples/../slam/vio_slam.py", line 65, in initial_statenaive_pose = gtsam.Pose3.identity()
AttributeError: type object 'gtsam.gtsam.Pose3' has no attribute 'identity'
Traceback (most recent call last):File "<string>", line 1, in <module>File "anaconda3/envs/zl/lib/python3.9/multiprocessing/spawn.py", line 116, in spawn_mainexitcode = _main(fd, parent_sentinel)File "anaconda3/envs/zl/lib/python3.9/multiprocessing/spawn.py", line 126, in _mainself = reduction.pickle.load(from_parent)File "anaconda3/envs/zl/lib/python3.9/multiprocessing/synchronize.py", line 110, in __setstate__self._semlock = _multiprocessing.SemLock._rebuild(*state)
FileNotFoundError: [Errno 2] No such file or directory
Traceback (most recent call last):File "<string>", line 1, in <module>File "anaconda3/envs/zl/lib/python3.9/multiprocessing/spawn.py", line 116, in spawn_mainexitcode = _main(fd, parent_sentinel)File "anaconda3/envs/zl/lib/python3.9/multiprocessing/spawn.py", line 126, in _mainself = reduction.pickle.load(from_parent)File "anaconda3/envs/zl/lib/python3.9/multiprocessing/synchronize.py", line 110, in __setstate__self._semlock = _multiprocessing.SemLock._rebuild(*state)
FileNotFoundError: [Errno 2] No such file or directory

重新卸载安装其他版本的gtsam也没解决,于是跳转至前文介绍的部署流程了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161348.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网安AIGC专题11.1】论文12:理解和解释代码,GPT-3大型语言模型学生创建的代码解释比较+错误代码的解释(是否可以发现并改正)

Comparing Code Explanations Created by Students and Large Language Models 写在最前面总结思考 背景介绍编程教育—代码理解和解释技能培养编程教育—解决方案研究问题研究结果 相关工作Code ComprehensionPedagogical Benifis of code explanationLarge Language Models i…

vue3+element Plus实现弹框的拖拽、可点击底层页面功能

1、template部分 <el-dialog:modal"false"v-model"dialogVisible"title""width"30%"draggable:close-on-click-modal"false"class"message-dialog"> </el-dialog> 必须加的属性 modal:是否去掉遮罩层…

【Java 进阶篇】Java Session 原理及快速入门

大家好&#xff0c;欢迎来到本篇博客。今天&#xff0c;我们将探讨Java Web开发中一个重要而令人兴奋的概念&#xff0c;即Session&#xff08;会话&#xff09;。Session是一种在Web应用程序中跟踪用户状态和数据的机制。我们将深入了解Session的原理&#xff0c;并通过示例来…

第六讲:VBA与ACCESS的ADO连接中,所涉及的对象

《VBA数据库解决方案》教程&#xff08;10090845&#xff09;是我推出的第二套教程&#xff0c;目前已经是第二版修订了。这套教程定位于中级&#xff0c;是学完字典后的另一个专题讲解。数据库是数据处理的利器&#xff0c;教程中详细介绍了利用ADO连接ACCDB和EXCEL的方法和实…

FreeRTOS笔记【一】 任务的创建(动态方法和静态方法)

一、任务创建和删除API函数 函数描述xTaskCreate()使用动态的方法创建一个任务xTaskCreateStatic()使用静态的方法创建一个任务xTaskCreateRestricted()创建一个使用MPU进行限制的任务&#xff0c;相关内存使用动态内存分配vTaskDelete()删除一个任务 二、动态创建任务 2.1 …

卷积与反卷积

文章目录 1 卷积1.1 卷积后的输出维度 2 反卷积2.1 来源2.2 原理2.3 使用2.3.1 padding2.3.2 strideoutput_padding 2.3 意义 1 卷积 1.1 卷积后的输出维度 设输入维度为i x i&#xff0c;卷积核大小为k x k&#xff0c;padding为p&#xff0c;strides为s&#xff0c;则输出维…

项目实战:新增@RequestMapping和@GetMapping和@PostMapping三个注解

1、RequestMapping package com.csdn.mymvc.annotation; import java.lang.annotation.*; Target(ElementType.TYPE) Retention(RetentionPolicy.RUNTIME) Inherited public interface RequestMapping {String value(); }2、PostMapping package com.csdn.mymvc.annotation; im…

NLP 模型中的偏差和公平性检测

一、说明 近年来&#xff0c;自然语言处理 &#xff08;NLP&#xff09; 模型广受欢迎&#xff0c;彻底改变了我们与文本数据交互和分析的方式。这些基于深度学习技术的模型在广泛的应用中表现出了卓越的能力&#xff0c;从聊天机器人和语言翻译到情感分析和文本生成。然而&…

JVM虚拟机:垃圾回收器组合参数设定

本文重点 前面的课程中我们介绍了目前JVM中主流的垃圾回收器&#xff0c;不同的回收器会有不同的组合&#xff0c;其中1.8版本的jdk中&#xff0c;默认使用的是Parallel ScavengeParallel Old&#xff0c;也就是说新生代使用Parallel Scavenge&#xff0c;然后老年代使用Paral…

Java Jar 包还不知道怎么反编译,赶紧看看这个 IDEA 插件!

前言 当我们使用 Java 开发时&#xff0c;经常会遇到一种情况&#xff1a;我们拿到了一个 JAR 文件&#xff0c;但是却没有源代码。这时候&#xff0c;我们就需要使用反编译工具来帮助我们还原出源代码。 反编译工具可以将编译后的 JAR 文件转换回可读的 Java 源代码。这样&a…

Go 如何实现并发

Go语言的并发机制是其强大和流行的一个关键特性之一。Go使用协程&#xff08;goroutines&#xff09;和通道&#xff08;channels&#xff09;来实现并发编程&#xff0c;这使得编写高效且可维护的并发代码变得相对容易。下面是Go的并发机制的详细介绍&#xff1a; 协程&#x…

【Qt之QtXlsx模块】安装及使用

1. 安装Perl&#xff0c;编译QtXlsx源码用 可以通过命令行进行查看是否已安装Perl。 下载及安装传送门&#xff1a;链接: https://blog.csdn.net/MrHHHHHH/article/details/134233707?spm1001.2014.3001.5502 1.1 未安装 命令&#xff1a;perl --version 显示以上是未安装…