基于卷尾猴算法的无人机航迹规划-附代码

基于卷尾猴算法的无人机航迹规划

文章目录

  • 基于卷尾猴算法的无人机航迹规划
    • 1.卷尾猴搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用卷尾猴算法来优化无人机航迹规划。

1.卷尾猴搜索算法

卷尾猴算法原理请参考:https://blog.csdn.net/u011835903/article/details/123328669

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得卷尾猴搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用卷尾猴算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,卷尾猴算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161416.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

差生文具多之(一)eBPF

前言 在问题排查过程中, 通常包含: 整体观测, 数据采集, 数据分析这几个阶段. 对于简单问题的排查, 可以跳过前两个步骤, 无需额外收集数据, 直接通过分析日志中的关键信息就可以定位根因; 而对于复杂问题的排查, 为了对应用的行为有更完整的了解, 可以通过以下形式收集更多的…

嵌入式中如何将BootLoader与APP合并成一个固件

1、前言 嵌入式固件一般分为BootLoader和App,BootLoader用于启动校验、App升级、App版本回滚等功能,BootLoader在cpu上电第一阶段中运行,之后跳转至App地址执行应用程序。 因此,在发布固件的时候,会存在BootLoader固件…

野火霸天虎 STM32F407 学习笔记_1 stm32介绍;调试方法介绍

STM32入门——基于野火 F407 霸天虎课程学习 前言 博主开始探索嵌入式以来,其实很早就开始玩 stm32 了。但是学了一段时间之后总是感觉还是很没有头绪,不知道在学什么。前前后后分别尝试了江协科技、正点原子、野火霸天虎三次 stm32 的课程学习。江协科…

【qemu逃逸】HWS2017-FastCP

前言 虚拟机用户名:root 虚拟机密码:无密码 本题有符号,所以对于设备定位啥的就不多说了,直接逆向设备吧。 设备逆向 在 realize 函数中设置一个时钟任务,并且可以看到只注册了 mmio,大小为 0x100000。…

什么是DITA?从百度的回答说起

▲ 搜索“大龙谈智能内容”关注GongZongHao▲ 什么是DITA? 把这个问题输入百度,获得以下回答: DITA 是“Darwin Information Typing Architecture”(达尔文信息类型化体系结构)的缩写,它是IBM 公司为OASIS 所支持…

Canvas 实现进度条展示统计数据示例

canvas可以画柱状图&#xff0c;如下就是一个例子&#xff0c;主要用到了lineWidth&#xff0c;beginPath&#xff0c;lineCap等知识点。 效果图 源代码 <!DOCTYPE Html> <html> <head><title>Line Chart Demo</title><meta http-equiv&quo…

腾讯云服务器CVM详细介绍_优缺点亲自整理

腾讯云服务器CVM提供安全可靠的弹性计算服务&#xff0c;腾讯云明星级云服务器&#xff0c;弹性计算实时扩展或缩减计算资源&#xff0c;支持包年包月、按量计费和竞价实例计费模式&#xff0c;CVM提供多种CPU、内存、硬盘和带宽可以灵活调整的实例规格&#xff0c;提供9个9的数…

腾讯云CVM服务器操作系统镜像大全

腾讯云CVM服务器的公共镜像是由腾讯云官方提供的镜像&#xff0c;公共镜像包含基础操作系统和腾讯云提供的初始化组件&#xff0c;公共镜像分为Windows和Linux两大类操作系统&#xff0c;如TencentOS Server、Windows Server、OpenCloudOS、CentOS Stream、CentOS、Ubuntu、Deb…

【Java】类和对象

类和对象 类&#xff1a;类是描述一个对象的&#xff1b; 对象&#xff1a;对象是类产生的实体&#xff1b; 类 一般一个文件中只定义一个类&#xff1b; 类的组成&#xff1a; 成员变量&#xff08;也叫做属性、字段&#xff09;&#xff1a;定义在方法的外部&#xff0c;类…

【算法练习Day39】单词拆分多重背包的介绍

​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;练题 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 文章目录 单词拆分多重背包总结&…

【iOS】知乎日报前三周总结

这几天一直在进行知乎日报的仿写&#xff0c;仿写过程中积累了许多实用的开发经验&#xff0c;并对MVC有了更深的了解&#xff0c;特撰此篇作以总结 目录 第一周将网络请求封装在一个单例类Manager中SDWebImage库的简单使用运用时间戳处理当前时间自定义NavigationBar 第二周在…

轻量封装WebGPU渲染系统示例<12>- 基础3D对象实体(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/main/src/voxgpu/sample/PrimitiveEntityTest.ts 此示例渲染系统实现的特性: 1. 用户态与系统态隔离。 细节请见&#xff1a;引擎系统设计思路 - 用户态与系统态隔离-CSDN博客 2. 高频调用与低频调用隔…