多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉 计算机竞赛

文章目录

  • 0 前言
  • 2 先上成果
  • 3 多目标跟踪的两种方法
    • 3.1 方法1
    • 3.2 方法2
  • 4 Tracking By Detecting的跟踪过程
    • 4.1 存在的问题
    • 4.2 基于轨迹预测的跟踪方式
  • 5 训练代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习多目标跟踪 实时检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 先上成果

在这里插入图片描述

3 多目标跟踪的两种方法

3.1 方法1

基于初始化帧的跟踪,在视频第一帧中选择你的目标,之后交给跟踪算法去实现目标的跟踪。这种方式基本上只能跟踪你第一帧选中的目标,如果后续帧中出现了新的物体目标,算法是跟踪不到的。这种方式的优点是速度相对较快。缺点很明显,不能跟踪新出现的目标。

3.2 方法2

基于目标检测的跟踪,在视频每帧中先检测出来所有感兴趣的目标物体,然后将其与前一帧中检测出来的目标进行关联来实现跟踪的效果。这种方式的优点是可以在整个视频中跟踪随时出现的新目标,当然这种方式要求你前提得有一个好的“目标检测”算法。

学长主要分享Option2的实现原理,也就是Tracking By Detecting的跟踪方式。

4 Tracking By Detecting的跟踪过程

**Step1:**使用目标检测算法将每帧中感兴趣的目标检测出来,得到对应的(位置坐标, 分类, 可信度),假设检测到的目标数量为M;

**Step2:**通过某种方式将Step1中的检测结果与上一帧中的检测目标(假设上一帧检测目标数量为N)一一关联起来。换句话说,就是在M*N个Pair中找出最像似的Pair。

对于Step2中的“某种方式”,其实有多种方式可以实现目标的关联,比如常见的计算两帧中两个目标之间的欧几里得距离(平面两点之间的直线距离),距离最短就认为是同一个目标,然后通过匈牙利算法找出最匹配的Pair。当让,你还可以加上其他的判断条件,比如我用到的IOU,计算两个目标Box(位置大小方框)的交并比,该值越接近1就代表是同一个目标。还有其他的比如判断两个目标的外观是否相似,这就需要用到一种外观模型去做比较了,可能耗时更长。

在关联的过程中,会出现三种情况:

1)在上一帧中的N个目标中找到了本次检测到的目标,说明正常跟踪到了;

2)在上一帧中的N个目标中没有找到本次检测到的目标,说明这个目标是这一帧中新出现的,所以我们需要把它记录下来,用于下下一次的跟踪关联;

3)在上一帧中存在某个目标,这一帧中并没有与之关联的目标,那么说明该目标可能从视野中消失了,我们需要将其移除。(注意这里的可能,因为有可能由于检测误差,在这一帧中该目标并没有被检测到)

在这里插入图片描述

4.1 存在的问题

上面提到的跟踪方法在正常情况下都能够很好的工作,但是如果视频中目标运动得很快,前后两帧中同一个目标运动的距离很远,那么这种跟踪方式就会出现问题。

在这里插入图片描述
如上图,实线框表示目标在第一帧的位置,虚线框表示目标在第二帧的位置。当目标运行速度比较慢的时候,通过之前的跟踪方式可以很准确的关联(A, A’)和(B,
B’)。但是当目标运行速度很快(或者隔帧检测)时,在第二帧中,A就会运动到第一帧中B的位置,而B则运动到其他位置。这个时候使用上面的关联方法就会得到错误的结果。

那么怎样才能更加准确地进行跟踪呢?

4.2 基于轨迹预测的跟踪方式

既然通过第二帧的位置与第一帧的位置进行对比关联会出现误差,那么我们可以想办法在对比之前,先预测目标的下一帧会出现的位置,然后与该预测的位置来进行对比关联。这样的话,只要预测足够精确,那么几乎不会出现前面提到的由于速度太快而存在的误差

在这里插入图片描述

如上图,我们在对比关联之前,先预测出A和B在下一帧中的位置,然后再使用实际的检测位置与预测的位置进行对比关联,可以完美地解决上面提到的问题。理论上,不管目标速度多么快,都能关联上。那么问题来了,怎么预测目标在下一帧的位置?

方法有很多,可以使用卡尔曼滤波来根据目标前面几帧的轨迹来预测它下一帧的位置,还可以使用自己拟合出来的函数来预测下一帧的位置。实际过程中,我是使用拟合函数来预测目标在下一帧中的位置。

在这里插入图片描述
如上图,通过前面6帧的位置,我可以拟合出来一条(T->XY)的曲线(注意不是图中的直线),然后预测目标在T+1帧的位置。具体实现很简单,Python中的numpy库中有类似功能的方法。

5 训练代码

这里记录一下训练代码,来日更新


if FLAGS.mode == ‘eager_tf’:
# Eager mode is great for debugging
# Non eager graph mode is recommended for real training
avg_loss = tf.keras.metrics.Mean(‘loss’, dtype=tf.float32)
avg_val_loss = tf.keras.metrics.Mean(‘val_loss’, dtype=tf.float32)

        for epoch in range(1, FLAGS.epochs + 1):for batch, (images, labels) in enumerate(train_dataset):with tf.GradientTape() as tape:outputs = model(images, training=True)regularization_loss = tf.reduce_sum(model.losses)pred_loss = []for output, label, loss_fn in zip(outputs, labels, loss):pred_loss.append(loss_fn(label, output))total_loss = tf.reduce_sum(pred_loss) + regularization_lossgrads = tape.gradient(total_loss, model.trainable_variables)optimizer.apply_gradients(zip(grads, model.trainable_variables))logging.info("{}_train_{}, {}, {}".format(epoch, batch, total_loss.numpy(),list(map(lambda x: np.sum(x.numpy()), pred_loss))))avg_loss.update_state(total_loss)for batch, (images, labels) in enumerate(val_dataset):outputs = model(images)regularization_loss = tf.reduce_sum(model.losses)pred_loss = []for output, label, loss_fn in zip(outputs, labels, loss):pred_loss.append(loss_fn(label, output))total_loss = tf.reduce_sum(pred_loss) + regularization_losslogging.info("{}_val_{}, {}, {}".format(epoch, batch, total_loss.numpy(),list(map(lambda x: np.sum(x.numpy()), pred_loss))))avg_val_loss.update_state(total_loss)logging.info("{}, train: {}, val: {}".format(epoch,avg_loss.result().numpy(),avg_val_loss.result().numpy()))avg_loss.reset_states()avg_val_loss.reset_states()model.save_weights('checkpoints/yolov3_train_{}.tf'.format(epoch))

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/161776.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

雨水收集设施模块收集和利用雨水成为解决城市供水矛盾的途径之一

雨水收集设施模块是一种高效、环保的雨水收集和利用系统,它通过收集和利用雨水来解决城市供水矛盾。 雨水收集设施模块主要由雨水收集器、储水池、过滤器和水泵等组成。当雨水流入雨水收集器时,经过过滤器的过滤,进入储水池中储存。当需要用…

volatile-无原子性案例详解

package com.nanjing.gulimall.zhouyimo.controller;import java.util.concurrent.TimeUnit;/*** author zhou* version 1.0* date 2023/11/5 7:56 下午*/ class MyNumber{int number;public synchronized void add(){number;} } public class VolatileNoAtomicDemo {public st…

springboot前后端时间类型传输

springboot前后端时间类型传输 前言1.java使用时间类型java.util.Date2.java使用localDateTime 前言 springboot前后端分离项目总是需要进行时间数据类型的接受和转换,针对打代码过程中不同的类型转化做个总结 1.java使用时间类型java.util.Date springboot的项目中使用了new …

List 接口常用实现类底层分析

一、集合 1.1 简介 集合主要分为两组(单列集合、双列集合),Collection 接口有两个重要的子接口 List 和Set,它们的实现子类都是单列集合。Map 接口的实现子类是双列集合,存放的是 K-V 1.2 关系图 二、Collection 接口…

03、SpringBoot + 微信支付 ---- 创建订单、保存二维码url、显示订单列表

目录 Native 下单1、创建课程订单保存到数据库1-1:需求:1-2:代码:1-3:测试结果: 2、保存支付二维码的url2-1:需求:2-2:代码:2-3:测试:…

Elasticsearch:RAG vs Fine-tunning (大语言模型微调)

如果你对 RAG 还不是很熟悉的话,请阅读之前的文章 “Elasticsearch:什么是检索增强生成 - RAG?”。你可以阅读文章 “Elasticsearch:在你的数据上训练大型语言模型 (LLM)” 来了解更多关于如何训练你的模型。在今天的文章中&#…

算法模板之单调栈解密 | 图文详解

🌈个人主页:聆风吟 🔥系列专栏:算法模板、数据结构 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. ⛳️单调栈讲解1.1 🔔单调栈的定义1.2 🔔如何维护一个单…

Docker容器技术实战4

11、docker安全 proc未被隔离,所以在容器内和宿主机上看到的东西是一样的 容器资源控制 cpu资源限制 top命令,查看cpu使用率 ctrlpq防止退出回收,容器会直接调用cgroup,自动创建容器id的目录 cpu优先级设定 测试时只保留一个cpu…

答题测评考试小程序的效果如何

在线答题系统是一种在线练习、考试、测评的智能答题系统,适用于企业培训、测评考试、知识竞赛、模拟考试等场景,管理员可任意组题、随机出题,答题者成功提交后,系统自动判分。 多种题目类型,两种答题模式 练习模式&a…

c语言实现http下载功能,显示进度条和下载速率

#include <stdio.h>//printf #include <string.h>//字符串处理 #include <sys/socket.h>//套接字 #include <arpa/inet.h>//ip地址处理 #include <fcntl.h>//open系统调用 #include <unistd.h>//write系统调用 #include <netdb.h>//…

若依笔记(四):代码生成器

已知使用MyBatisPlus代码生成器可以自动生成Entity、Mapper、Service、Controller代码&#xff0c;前提是数据库中有数据表&#xff0c;生成pojo类以及对于该数据表的增删改查命令的代码&#xff0c;若依更进一步能选择表后生成代码、预览、下载&#xff0c;同时可以生产前端代…

chrome 扩展 popup 弹窗的使用

popup的基本使用方法 popup介绍 popup 是点击 browser_action 或者 page_action图标时打开的一个小窗口网页&#xff0c;焦点离开网页就立即关闭&#xff0c;一般用来做一些临时性的交互。 popup配置 V3版本中&#xff08;V2版本是在 browser_action 中 &#xff09;&#x…