单片机温湿度-光照-DHT11-烟雾气体检测控制系统-proteus仿真-源程序

一、系统方案
本设计采用52单片机作为主控器,液晶1602显示,DHT11温湿度,光照、烟雾气体检测,按键设置报警阀值,蜂鸣器报警。
在这里插入图片描述

二、硬件设计
原理图如下:
在这里插入图片描述

三、单片机软件设计
1、首先是系统初始化
//
// 1602液晶初始化
/
/
void LcdInit()
{
LcdWriteCmd(0x38); // 162显示,57点阵,8位数据口
LcdWriteCmd(0x0C); // 开显示,不显示光标
LcdWriteCmd(0x06); // 地址加1,当写入数据后光标右移
LcdWriteCmd(0x01); // 清屏
}

2、液晶显示程序
//
// 1602液晶写命令函数,cmd就是要写入的命令
/
/
void LcdWriteCmd(uchar cmd)
{
LcdRs_P = 0;
LcdRw_P = 0;
LcdEn_P = 0;
P0=cmd;
DelayMs(2);
LcdEn_P = 1;
DelayMs(2);
LcdEn_P = 0;
}

//
// 1602液晶写数据函数,dat就是要写入的数据
/
/
void LcdWriteData(uchar dat)
{
LcdRs_P = 1;
LcdRw_P = 0;
LcdEn_P = 0;
P0=dat;
DelayMs(2);
LcdEn_P = 1;
DelayMs(2);
LcdEn_P = 0;
}

3、按键程序
//
// 按键扫描
/
/
void KeyScanf()
{
if(KeySet_P0) // 判断是否有按键按下
{
DelayMs(10); // 消除按键按下的抖动
if(KeySet_P
0)
{
while(!KeySet_P); // 等待按键释放
menu_1++;
if(menu_15)
menu_1=0;
}
}
while(menu_1!=0)
{
if(KeySet_P
0) // 判断是否有按键按下
{
DelayMs(10); // 消除按键按下的抖动
if(KeySet_P0)
{
while(!KeySet_P); // 等待按键释放
menu_1++;
if(menu_1
9)
menu_1=0;
}
}
if(menu_11)
{
LcdGotoXY(0,0); // 液晶恢复测量时的内容显示
LcdPrintStr("Temp_Min set ");
LcdGotoXY(1,0); // 定位到第0行第7列
LcdPrintTHD(Set_Value[0][0]); // 显示当前下限
LcdGotoXY(1,3);
LcdPrintStr("C ");
if(KeyDown_P
0) // 报警值减的处理
{
DelayMs(10); // 消除按键按下的抖动
if(KeyDown_P0)
{
while(!KeyDown_P); // 等待按键释放
Set_Value[0][0]–;
}
}
if(KeyUp_P
0) // 报警值加处理
{
DelayMs(10); // 消除按键按下的抖动
if(KeyUp_P0)
{
while(!KeyUp_P); // 等待按键释放
Set_Value[0][0]++;
}
}
}
if(menu_1
2)
{
LcdGotoXY(0,0); // 液晶恢复测量时的内容显示
LcdPrintStr("Temp_MAX set ");
LcdGotoXY(1,0); // 定位到第0行第7列
LcdPrintTHD(Set_Value[0][1]); // 显示当前下限
LcdGotoXY(1,3);
LcdPrintStr("C ");
if(KeyDown_P0) // 报警值减的处理
{
DelayMs(10); // 消除按键按下的抖动
if(KeyDown_P
0)
{
while(!KeyDown_P);// 等待按键释放
Set_Value[0][1]–;
}
}
if(KeyUp_P0) // 报警值加处理
{
DelayMs(10);
if(KeyUp_P
0)
{
while(!KeyUp_P);
Set_Value[0][1]++;
}
}
}
if(menu_13)
{
LcdGotoXY(0,0); // 液晶恢复测量时的内容显示
LcdPrintStr("Humi_Min set “);
LcdGotoXY(1,0); // 定位到第0行第7列
LcdPrintTHD(Set_Value[1][0]); // 显示当前下限
LcdGotoXY(1,3);
LcdPrintStr(”%RH ");
if(KeyDown_P
0) // 报警值减的处理
{
DelayMs(10); // 消除按键按下的抖动
if(KeyDown_P0)
{
while(!KeyDown_P);// 等待按键释放
Set_Value[1][0]–;
}
}
if(KeyUp_P
0) // 报警值加处理
{
DelayMs(10);
if(KeyUp_P0)
{
while(!KeyUp_P);
Set_Value[1][0]++;
}
}
}
if(menu_1
4)
{
LcdGotoXY(0,0); // 液晶恢复测量时的内容显示
LcdPrintStr("Humi_MAX set “);
LcdGotoXY(1,0); // 定位到第0行第7列
LcdPrintTHD(Set_Value[1][1]); // 显示当前上限
LcdGotoXY(1,3);
LcdPrintStr(”%RH ");
if(KeyDown_P0) // 报警值减的处理
{
DelayMs(10); // 消除按键按下的抖动
if(KeyDown_P
0)
{
while(!KeyDown_P);// 等待按键释放
Set_Value[1][1]–;
}
}
if(KeyUp_P0) // 报警值加处理
{
DelayMs(10);
if(KeyUp_P
0)
{
while(!KeyUp_P);
Set_Value[1][1]++;
}
}
}
if(menu_15)
{
LcdGotoXY(0,0); // 液晶恢复测量时的内容显示
LcdPrintStr("Light_Min set “);
LcdGotoXY(1,0); // 定位到第0行第7列
LcdPrintTHD(Set_Value[2][0]); // 显示当前下限
LcdGotoXY(1,3);
LcdPrintStr(” ");
if(KeyDown_P
0) // 报警值减的处理
{
DelayMs(10); // 消除按键按下的抖动
if(KeyDown_P0)
{
while(!KeyDown_P);// 等待按键释放
Set_Value[2][0]–;
}
}
if(KeyUp_P
0) // 报警值加处理
{
DelayMs(10);
if(KeyUp_P0)
{
while(!KeyUp_P);
Set_Value[2][0]++;
}
}
}
if(menu_1
6)
{
LcdGotoXY(0,0); // 液晶恢复测量时的内容显示
LcdPrintStr("Light_MAX set “);
LcdGotoXY(1,0); // 定位到第0行第7列
LcdPrintTHD(Set_Value[2][1]); // 显示当前上限
LcdGotoXY(1,3);
LcdPrintStr(” “);
if(KeyDown_P0) // 报警值减的处理
{
DelayMs(10); // 消除按键按下的抖动
if(KeyDown_P
0)
{
while(!KeyDown_P);// 等待按键释放
Set_Value[2][1]–;
}
}
if(KeyUp_P0) // 报警值加处理
{
DelayMs(10);
if(KeyUp_P
0)
{
while(!KeyUp_P);
Set_Value[2][1]++;
}
}
}
if(menu_17)
{
LcdGotoXY(0,0); // 液晶恢复测量时的内容显示
LcdPrintStr(" YW_Min set ");
LcdGotoXY(1,0); // 定位到第0行第7列
LcdPrintTHD(Set_Value[3][0]); // 显示当前下限
LcdGotoXY(1,3);
LcdPrintStr("ppm ");
if(KeyDown_P
0) // 报警值减的处理
{
DelayMs(10); // 消除按键按下的抖动
if(KeyDown_P0)
{
while(!KeyDown_P);// 等待按键释放
Set_Value[3][0]–;
}
}
if(KeyUp_P
0) // 报警值加处理
{
DelayMs(10);
if(KeyUp_P0)
{
while(!KeyUp_P);
Set_Value[3][0]++;
}
}
}
if(menu_1
8)
{
LcdGotoXY(0,0); // 液晶恢复测量时的内容显示
LcdPrintStr(” YW_MAX set ");
LcdGotoXY(1,0); // 定位到第0行第7列
LcdPrintTHD(Set_Value[3][1]); // 显示当前上限
LcdGotoXY(1,3);
LcdPrintStr("ppm ");
if(KeyDown_P0) // 报警值减的处理
{
DelayMs(10); // 消除按键按下的抖动
if(KeyDown_P
0)
{
while(!KeyDown_P);// 等待按键释放
Set_Value[3][1]–;
}
}
if(KeyUp_P0) // 报警值加处理
{
DelayMs(10);
if(KeyUp_P
0)
{
while(!KeyUp_P);
Set_Value[3][1]++;
}
}
}
}
}

4、核心算法程序
//
// 主函数
/
/
void main()
{
LcdInit(); // 执行液晶初始化 ”
DelayMs(500);
DelayMs(500);
while(1)
{
KeyScanf();
ADC_Processing();
LcdPrint_A0(1,0,ADC_Value[0]); // 光强
LcdPrint_A1(1,8,ADC_Value[1]); //

	DHT11_receive();                 // 读取温湿度LcdPrint_RH(0,8,humi_value);     // 显示当前湿度LcdPrint_TH(0,0,temp_value);    // 显示当前温度AlarmJudge();								// 判断一下是否需要报警,是的话则报警
}

}
四、 proteus仿真设计
Proteus软件是一款应用比较广泛的工具,它可以在没有硬件平台的基础上通过自身的软件仿真出硬件平台的运行情况,这样就可以通过软件仿真来验证我们设计的方案有没有问题,如果有问题,可以重新选择器件,连接器件,直到达到我们设定的目的,避免我们搭建实物的时候,如果当初选择的方案有问题,我们器件都已经焊接好了,再去卸载下去,再去焊接新的方案的器件,测试,这样会浪费人力和物力,也给开发者带来一定困惑,Proteus仿真软件就很好的解决这个问题,我们在设计之初,就使用该软件进行模拟仿真,测试,选择满足我们设计的最优方案。最后根据测试没问题的仿真图纸,焊接实物,调试,最终完成本设计的作品。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/162260.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ARMv8 SIMD和浮点指令编程】浮点加减乘除指令——四则运算

浮点指令有专门的加减乘除四则运算指令,比如 FADD、FSUB、FMUL、FDIV 等。 1 FADD (scalar) 浮点加法(标量)。该指令将两个源 SIMD&FP 寄存器的浮点值相加,并将结果写入目标 SIMD&FP 寄存器。 该指令可以产生浮点异常。根据 FPCR 中的设置,异常会导致在 FPSR 中…

计讯物联高精度GNSS接收机:担当小型水库大坝安全监测解决方案的“护航者”

应用背景 水库大坝作为水利工程建筑物,承担着灌溉、发电、供水、生态等重任。一旦水库大坝发生安全事故,后果将不堪设想。因此,水库大坝的安全监测对保障水利工程顺利运行具有重要意义。 计讯物联作为水利行业专家型企业,多年来…

SQL数据库使用方法

首先打开sqlite3.exe所在文件夹,如图1 图1 在文件夹路径中将路径改为cmd,如图2所示 图2 在弹出的cmd窗口中输入如图3所示。 图3 sqlite3 tichiceliang.db 其中tichiceliang是数据库名称。然后按enter,再在cmd中输入.table,可以看到文件夹目…

01-单节点部署clickhouse及简单使用

1、下载rpm安装包: 官网:https://packages.clickhouse.com/rpm/stable/ clickhouse19.4版本之后只需下载3个rpm安装包,上传到节点目录即可 2、rpm包安装: 安装顺序为conmon->server->client 执行 rpm -ivh ./clickhouse-…

中国计算机学会推荐国际学术会议和期刊目录

后面还有很多,我就不一一列出来啦,有需要的小伙伴可以自行下载哈 等等等

全志R128应用开发案例——DBI驱动ST7789V1.3寸LCD屏

DBI驱动ST7789V1.3寸LCD 之前介绍了 R128 平台使用 SPI 驱动显示屏 ST7789V1.3寸 LCD,接下来介绍的是使用 DBI 接口驱动。 R128 平台提供了 SPI DBI 的 SPI TFT 接口,具有如下特点: Supports DBI Type C 3 Line/4 Line Interface ModeSupp…

python判断出栈顺序是否合法_合适出栈序列

题目: 有一个含1~n的n个整数序列a,通过一个栈可以产生多种出栈序列,设计一个算法采用链栈判断序列b(为1~n的某个排列)是否为一个合适的出栈序列,并用相关数据进行测试。 解释: ①栈空&…

深度学习框架TensorFlow.NET之数据类型及张量2(C#)

环境搭建参考: 深度学习框架TensorFlow.NET环境搭建1(C#)-CSDN博客 由于本文作者水平有限,如有写得不对的地方,往指出 声明变量:tf.Variable 声明常量:tf.constant 下面通过代码的方式进行学…

1.UML面向对象类图和关系

文章目录 4种静态结构图类图类的表示类与类之间的关系依赖关系(Dependency)关联关系(Association)聚合(Aggregation)组合(Composition)实现(Realization)继承/泛化(Inheritance/Generalization)常用的UML工具reference欢迎访问个人网络日志🌹🌹知行空间🌹🌹 4种静态结构…

MySQL索引优化与查询优化

1. 索引失效案例 MySQL中提高性能的一个最有效的方式是对数据表设计合理的索引。索引提供了访问高效数据的方法,并且加快查询的速度,因此索引对查询的速度有着至关重要的影响。 使用索引可以快速地定位表中的某条记录,从而提高数据库查询的速…

mybatis在springboot当中的使用

1.当使用Mybatis实现数据访问时,主要: - 编写数据访问的抽象方法 - 配置抽象方法对应的SQL语句 关于抽象方法: - 必须定义在某个接口中,这样的接口通常使用Mapper作为名称的后缀,例如AdminMapper - Mybatis框架底…

Swift语言配合HTTP写的一个爬虫程序

下段代码使用Embassy库编写一个Swift爬虫程序来爬取jshk的内容。我会使用proxy_host为duoip,proxy_port为8000的爬虫IP服务器。 使用Embassy库编写一个Swift爬虫程序可以实现从网页上抓取数据的功能。下面是一个简单的步骤: 1、首先,需要在X…