如何选择SVM中最佳的【核函数】

参数“kernel"在sklearn中可选以下几种 选项:

            接下来我们 就通过一个例子,来探索一下不同数据集上核函数的表现。我们现在有一系列线性或非线性可分的数据,我们希望通过绘制SVC在不同核函数下的决策边界并计算SVC在不同核函数下分类准确率来观察核函数的效果。

         我们先来导入相应的模块:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import svm#from sklearn.svm import SVC  两者都可以
from sklearn.datasets import make_circles, make_moons, make_blobs,make_classification # 生成数据集,make_classification生成分类数据集,make_blobs生成聚类数据集,make_moons生成半月形数据集,make_circles生成环形数据集,make_moons生成月牙形数据集

导入模块后,我们先来用以下代码绘制四种不同类型的分类图:

n_samples = 100datasets = [make_moons(n_samples=n_samples, noise=0.2, random_state=0),make_circles(n_samples=n_samples, noise=0.2, factor=0.5, random_state=1),make_blobs(n_samples=n_samples, centers=2, random_state=5),#分簇的数据集make_classification(n_samples=n_samples,n_features = 2,n_informative=2,n_redundant=0, random_state=5)#n_features:特征数,n_informative:带信息的特征数,n_redundant:不带信息的特征数]Kernel = ["linear","poly","rbf","sigmoid"]#四个数据集分别是什么样子呢?
for X,Y in datasets:plt.figure(figsize=(5,4))plt.scatter(X[:,0],X[:,1],c=Y,s=50,cmap="rainbow")

          我们总共有四个数据集,四种核函数,我们希望观察每种数据集下每个核函数的表现。以核函数为列,以图像分布 为行,我们总共需要16个子图来展示分类结果。而同时,我们还希望观察图像本身的状况,所以我们总共需要20 个子图,其中第一列是原始图像分布,后面四列分别是这种分布下不同核函数的表现。

nrows=len(datasets)
ncols=len(Kernel) + 1
fig, axes = plt.subplots(nrows, ncols,figsize=(20,16))

子图画好后,我们通过循环语句观察在不同的核函数不同的分类情况:

#第一层循环:在不同的数据集中循环
for ds_cnt, (X,Y) in enumerate(datasets):#在图像中的第一列,放置原数据的分布ax = axes[ds_cnt, 0]if ds_cnt == 0:ax.set_title("Input data")ax.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired,edgecolors='k')ax.set_xticks(())ax.set_yticks(())#第二层循环:在不同的核函数中循环#从图像的第二列开始,一个个填充分类结果for est_idx, kernel in enumerate(Kernel):#定义子图位置ax = axes[ds_cnt, est_idx + 1]#建模clf = svm.SVC(kernel=kernel, gamma=2).fit(X, Y)score = clf.score(X, Y)#绘制图像本身分布的散点图ax.scatter(X[:, 0], X[:, 1], c=Y,zorder=10,cmap=plt.cm.Paired,edgecolors='k')#绘制支持向量ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=50,facecolors='none', zorder=10, edgecolors='k')# facecolors='none':透明的#绘制决策边界x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5#np.mgrid,合并了我们之前使用的np.linspace和np.meshgrid的用法#一次性使用最大值和最小值来生成网格#表示为[起始值:结束值:步长]#如果步长是复数,则其整数部分就是起始值和结束值之间创建的点的数量,并且结束值被包含在内XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]#np.c_,类似于np.vstack的功能Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]).reshape(XX.shape)#填充等高线不同区域的颜色ax.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)#绘制等高线ax.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],levels=[-1, 0, 1])#设定坐标轴为不显示ax.set_xticks(())ax.set_yticks(())#将标题放在第一行的顶上if ds_cnt == 0:ax.set_title(kernel)#为每张图添加分类的分数   ax.text(0.95, 0.06, ('%.2f' % score).lstrip('0'), size=15, bbox=dict(boxstyle='round', alpha=0.8, facecolor='white')#为分数添加一个白色的格子作为底色, transform=ax.transAxes #确定文字所对应的坐标轴,就是ax子图的坐标轴本身, horizontalalignment='right' #位于坐标轴的什么方向)plt.tight_layout()
plt.show()

         由图可知,我们可以观察到,线性核函数和多项式核函数在非线性数据上表现会浮动,如果数据相对线性可分,则表现不错,如果是像环形数据那样彻底不可分的,则表现糟糕。在线性数据集上,线性核函数和多项式核函数即便有扰动项也可以表现不错,可见多项式核函数是虽然也可以处理非线性情况,但更偏向于线性的功能。 Sigmoid核函数就比较尴尬,它在非线性数据上强于两个线性核函数,但效果明显不如rbf,它在线性数据上完全 比不上线性的核函数们,对扰动项的抵抗也比较弱,所以它功能比较弱小,很少被用到。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/164232.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python使用pysqlcipher3对sqlite数据库进行加密

python对很多项目都需要对sqlite数据库的数据进行加密,最流行的加密方式是使用pysqlcipher3,当前使用的python版本为3.7,本博文是直接使用pysqlcipher3在项目上的应用,使用的是已编译好的pysqlcipher3包,如果你需要pys…

【pyspider】爬取ajax请求数据(post),如何处理python2字典的unicode编码字段?

情景:传统的爬虫只需要设置fetch_typejs即可,因为可以获取到整个页面。但是现在ajax应用越来越广泛,所以有的网页不能用此种爬虫类型来获取页面的数据,只能用slef.crawl()来发起http请求来抓取数据。 直接上例子: 可以…

动作捕捉系统通过SDK与LabVIEW通信

运动分析、VR、机器人等应用中常使用LabVIEW对动作捕捉数据进行实时解算。NOKOV度量动作捕捉系统支持通过SDK与LabVIEW进行通信,将动作数据传入LabVIEW。 一、软件设置 1、形影软件设置 1、将模式切换到后处理模式 2、加载一个刚体数据 3、打开软件设置 4、选择网…

学习笔记:利用CANOE Panel和CAPL脚本模拟主节点发送LIN通信指令

前一篇文章已经对CANOE如何模拟主节点和从节点进行LIN通信做了简单的记录,修改主节点发送的指令需要修改LIN ISC模块里的Frames帧对应的signal。这样改起来比较麻烦且不直观,幸好CANOE提供了Panel designer这样的工具,我们可以利用它设计自己…

数组的存储结构、特殊矩阵和稀疏矩阵的压缩存储

数组的存储结构、特殊矩阵和稀疏矩阵的压缩存储 1.数组的存储结构、特殊矩阵、稀疏矩阵的压缩存储1.1 数组的存储结构1.1.1 一维数组的存储结构关系式1.1.2 多维数组的存储结构关系式 1.2 特殊矩阵的压缩存储1.2.1 对称矩阵1.2.2 下三角矩阵1.2.3 上三角矩阵1.2.4 三对角矩阵 1…

Window10安装Docker

文章目录 Window10安装Docker前提条件Hyper -VWSL 2.0 安装包下载执行安装包更新 Window10安装Docker 前提条件 Hyper -V 如何启用 WSL 2.0 安装包下载 官网地址 下载后: 执行安装包 wsl --update等得有点久 重新打开 拉取一个helloworld镜像 说明已经…

大数据学习之一文学会Spark【Spark知识点总结】

文章目录 什么是SparkSpark的特点Spark vs HadoopSparkHadoopSpark集群安装部署Spark集群安装部署StandaloneON YARN Spark的工作原理什么是RDDRDD的特点Spark架构相关进程Spark架构原理 Spark实战:单词统计Scala代码开发java代码开发任务提交 Transformation与Acti…

vscode中 vue3+ts 项目的提示失效,volar插件失效问题解决方案

文章目录 前情提要bug回顾解决方案最后 前情提要 说起来很耻辱,从mac环境换到window环境,vscode的配置都是云端更新过来的,应该是一切正常才对,奇怪的是我的项目环境出现问题了,关于组件的ts和追踪都没有效果&#xff…

【JMeter】定时器分类以及场景介绍

1. 定时器分类 固定定时器 作用:请求之间设置等待时间应用场景:查询商品列表后,去查看列表商品详情页。针对商品列表数据量比较大的,响应时间会比较长,就需要设置等待时间然后去查看商详 2.定时器的作用域&#xff1…

【终端目标检测03】nanodet训练自己的数据集、NCNN部署到Android

nanodet训练自己的数据集、NCNN部署到Android 一、介绍二、训练自己的数据集1. 运行环境2. 数据集3. 配置文件4. 训练5. 训练可视化6. 测试 三、部署到android1. 使用官方权重文件部署1.1 下载权重文件1.2 使用Android Studio部署apk 2. 部署自己的模型【暂时存在问题】2.1 生成…

SpringBoot 整合RabbitMQ 之延迟队列实验

系列文章目录 第一章 Java线程池技术应用 第二章 CountDownLatch和Semaphone的应用 第三章 Spring Cloud 简介 第四章 Spring Cloud Netflix 之 Eureka 第五章 Spring Cloud Netflix 之 Ribbon 第六章 Spring Cloud 之 OpenFeign 第七章 Spring Cloud 之 GateWay 第八章 Sprin…

01-基于IDEA,Spring官网,阿里云官网,手动四种方式创建SpringBoot工程

快速上手SpringBoot SpringBoot技术由Pivotal团队研发制作,功能的话简单概括就是加速Spring程序初始搭建过程和Spring程序的开发过程的开发 最基本的Spring程序至少有一个配置文件或配置类用来描述Spring的配置信息现在企业级开发使用Spring大部分情况下是做web开…