密度聚类与层次聚类

      大家好,我是带我去滑雪!

      密度聚类(Density-based Clustering)和层次聚类(Hierarchical Clustering)是两种不同的聚类方法,用于将数据集中的数据点分组成簇。

目录

一、密度聚类

(1)DBSCAN

(2)DBSCAN计算方式

(3)DBSCAN算法的优缺点

(4)代码实现

二、层次聚类

(1)什么是层次聚类

(2)层次聚类的优缺点

(3)代码实现


一、密度聚类

(1)DBSCAN

       DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,该算法将具有足够密度的区域划分为簇,并在具有噪声的空间库中发现任意形状的簇,它将簇定义为密度相连的点的最大集合。DBSCAN既可以适用于凸样本集,也可以适用于非凸样本集。

        DBSCAN的核心思想是基于密度的。从直观效果上看,DBSCAN算法可以找到样本点的全部密集区域,并把这些密集区域当做一个一个的聚类簇。

        DBSCAN含有两个超参数:邻域半径Eps和最少点数目MinPts。这两个算法参数实际可以刻画什么叫密集——当邻域半径Eps内的点的个数大于最少点数目MinPts时,就是密集。

邻域(Eps):以给定对象为圆心,半径内的区域为该对象的邻域;核心对象:对象的邻域内至少有MinPts(设定的阈值)个对象,则该对象为核心对象;边界点对象的领域小于MinPts个对象,但是在某个核心对象的邻近域中;离群点(噪声):对象的领域小于MinPts个对象,且不在某个核心对象的邻域中

(2)DBSCAN计算方式

       1)密度直达:给定一个对象集合D,如果P为核心点,QPEps邻域内,那么称PQ密度直达(Directly Density-Reachable)。任何核心点到其自身密度直达,密度直达不具有对称性,如果PQ密度直达,那么QP不一定密度直达。

      2)密度可达:如果存在核心点P2P3……Pn,且P1P2密度直达,P2P3密度直达,……P(n-1)Pn密度直达,PnQ密度直达,则P1Q密度可达(Density-Reachable)。密度可达也不具有对称性。

     3)密度相连:如果存在核心点S,使得SPQ都密度可达,则PQ密度相连(Density-Connected)。密度相连具有对称性,如果PQ密度相连,那么QP也一定密度相连。密度相连的两个点属于同一个聚类簇

(3)DBSCAN算法的优缺点

DBSCAN算法的优点:

  • 1不需要预先确定聚类的数量。
  • 2可以很好地发现任意尺寸和任意形状的聚类。
  • 3可以在聚类的同时发现异常点,对数据集中的异常点不敏感。
  • 4)聚类结果没有偏倚,而k-means之类的聚类算法的初始值对聚类结果有很大影响。

DBSCAN算法的缺点:

  • 1)如果样本集的密度不均匀、聚类间距差相差很大时,聚类质量较差,这时用DBSCAN聚类一般不适合。
  • 2)如果样本集较大时,聚类收敛时间较长,尤其在我们定义的距离计算方式较为复杂的时候。
  • 3)调参比较复杂,epsMinPts的设置不同对结果会产生较大影响,需要多次尝试以获取最佳的聚类效果

(4)代码实现

from sklearn.cluster import DBSCAN

import numpy as np

# 输入数据

X = np.array([(1,1), (1,2), (2,1), (8,8), (8,9), (9,8), (15,15)])

# 创建DBSCAN对象,设置半径和最小样本数

dbscan = DBSCAN(eps=2, min_samples=3)

# 进行聚类

labels = dbscan.fit_predict(X)

# 输出聚类结果

for i in range(max(labels)+1):

    print(f"Cluster {i+1}: {list(X[labels==i])}")

print(f"Noise: {list(X[labels==-1])}")

二、层次聚类

(1)什么是层次聚类

        层次聚类试图在不同层次对数据集进行划分,从而形成树形的聚类结构。数据集的划分可采用“自底向上”的聚合策略,也可采用“自顶向下”的分拆策略。

凝聚的层次聚类:AGENS算法

       是一种自底向上聚合策略的层次聚类算法。它先将数据集中的每一个样本看作一个初始聚类,然后按照一定规则,例如类间距离最小,将最满足规则条件的两个类进行合并。如此反复进行,每次减少一个类,直到满足停止条件。需要预先确定下面三个要素:

  • 距离或相似度:欧氏距离、曼哈顿距离、夹角余弦等
  • 合并规则:最短距离,最长距离,中心距离,平均距离等
  • 停止条件:类的个数达到阈值、类的直径超过阈值等

(2)层次聚类的优缺点

优点

  • 多层次的聚类结构:层次聚类生成一个树状结构,可视化呈现数据点的多个层次聚类结果,使得用户可以在不同的抽象层次上研究数据的结构。这有助于更全面地理解数据。
  • 不需要事先指定簇的数量:与许多其他聚类算法不同,层次聚类不需要事先确定簇的数量,因为它可以根据数据的结构自动形成不同层次的聚类。
  • 可视化和解释性强:通过绘制层次聚类的树状图,可以直观地表示数据点如何组织成不同的簇。这种可视化有助于解释和理解数据的结构。
  • 适用于小规模数据集:层次聚类适合处理相对较小规模的数据集,因为它的时间和空间复杂度可能随着数据规模的增加而增加。

缺点

  • 计算复杂性高:层次聚类的计算复杂性通常比其他聚类算法高,特别是对于大规模数据集而言。构建层次结构可能需要大量的计算资源。
  • 不适用于大规模数据:由于计算复杂性高,层次聚类通常不适用于大规模数据集,因为它可能需要很长的时间来完成聚类分析。
  • 不适用于凸簇:层次聚类在处理凸形状的簇时可能效果不如一些其他算法,因为它更适合于发现非凸形状的簇。
  • 难以处理噪声:层次聚类通常难以处理噪声数据点,因为噪声可能会导致树状结构中的多个分支,使得解释和选择合适的聚类层次更加困难。

(3)代码实现

import math

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt 

from scipy.cluster.hierarchy import linkage,dendrogram

# 从excel中读取数据

def load_data(path):

       # 从excel中读取数据,并用dataframe存储

       global df

       df = pd.read_excel(path)

       # 将dataframe中的数据值转换为列表

       df_li = df.values.tolist()

       # 将存储好数据的列表转换为数组

       dataSet = []

       for i in df_li:

              tmp = []

              tmp.append(i)

              dataSet.append(tmp)

       # 返回

       return dataSet

# 计算欧式距离

def distance(pointA,pointB):

       dis = 0

       for i in range(len(pointA)):

              dis += (pointA[i]-pointB[i])**2

       return math.sqrt(dis)

# 寻找最小距离

def Matrix_min(pointsA,pointsB,indexA,indexB,result):

       for pointA in pointsA:

              tmp_min_dis = 10000

              for pointB in pointsB:

                     dis = distance(pointA,pointB)

              if dis < tmp_min_dis:

                     tmp_min_dis = dis

       result.append({'indexA':indexA,'indexB':indexB,'dist':tmp_min_dis})

# 利用最小簇间距离度量聚类

def search_mindis(result):

       tmp_min_dis = 10000

       tmp_min_list = []

       for i in result:

              if i['dist'] < tmp_min_dis:

                     tmp_min_dis = i['dist']

                     tmp_min_list = []

                     tmp_min_list.extend([i['indexA'],i['indexB']])

              elif i['dist'] == tmp_min_dis:

                     tmp_min_list.extend([i['indexA'],i['indexB']])

       return list(set(tmp_min_list))

# 层次聚类,合并样本,并原数据集中删除元素

def mergeGroup(array, mergeIndexs):

    mergeIndexs.sort()

    rangeLen = len(mergeIndexs) - 1;

    for i in range(rangeLen):

        array[mergeIndexs[0]].extend(array[mergeIndexs[i+1]])

    mergeIndexs.reverse()

    for i in range(rangeLen):

        del array[mergeIndexs[i]]

if __name__ == '__main__':

       # 加载数据

       data = []

       path = input(r'请输入文件路径:')

       dataSet = load_data(path)

       print(dataSet)

      

       # 进行层次聚类

       k = int(input('请输入聚类次数:'))

       while k-1 > 0:

              result = []

              for indexA,pointsA in enumerate(dataSet):

                     for indexB,pointsB in enumerate(dataSet):

                            if indexB > indexA:

                                   Matrix_min(pointsA,pointsB,indexA,indexB,result)

              mergeIndexs = search_mindis(result)

              mergeGroup(dataSet,mergeIndexs)

              k -= 1

       for item in dataSet:

              print(item)

       ## 可视化

       z=linkage(df,method='ward',metric='euclidean')

       p = dendrogram(z,0)

       plt.show()


更多优质内容持续发布中,请移步主页查看。

   点赞+关注,下次不迷路!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/164306.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面试题:线上MySQL的自增id用尽怎么办?

文章目录 前言表定义自增值idInnoDB系统自增row_idXidInnodb trx_id InnoDB数据可见性的核心思想为什么要加248&#xff1f;为何只读事务不分配trx_id&#xff1f;thread_id 总结 前言 MySQL的自增id都定义了初始值&#xff0c;然后不断加步长。虽然自然数没有上限&#xff0c…

【广州华锐互动】气象卫星监测AR互动教学软件为气象学习带来更多乐趣

由VR制作公司广州华锐互动开发的气象卫星监测AR互动教学软件是一款结合了增强现实(AR)技术与气象监测技术的教育软件。它通过直观、互动的方式&#xff0c;帮助学生更好地理解和掌握气象监测的基本知识和技能。本文将从气象卫星监测AR互动教学软件的应用场景、优势分析、实际意…

怎样选择文件外发控制系统,让数据实现高效安全交换?

制造型企业都非常重视其知识产权&#xff08;IP&#xff09;的安全性&#xff0c;尤其是其最有价值的产品设计数据的安全问题。基于复杂的供应链生态&#xff0c;每天可能要与几十家甚至上百家供应商及合作伙伴进行数据交换。不管是一级还是二级供应商&#xff0c;合作伙伴还是…

pycharm pro v2023.2.4(Python开发)

PyCharm是一种Python集成开发环境&#xff08;IDE&#xff09;&#xff0c;PyCharm提供了强大的功能&#xff0c;包括语法突出显示、智能代码完成、代码检查、自动重构和调试等特性&#xff0c;这些都可以帮助Python开发人员更加高效地编写代码。 PyCharm Pro是PyCharm的高级版…

Ripro-V5 6.4最新版 不限域名无限搭建(授权激活文件)

RiPro主题全新V5版本&#xff0c;是一个优秀且功能强大、易于管理、现代化的WordPress虚拟资源商城主题。支持首页模块化布局和WP原生小工具模块化首页可拖拽设置&#xff0c;让您的网站设计体验更加舒适。同时支持了高级筛选、自带会员生态系统、超全支付接口等众多功能&#…

百度上线“文心一言”付费版本,AI聊天机器人市场竞争加剧

原创 | 文 BFT机器人 百度不愧是我国AI技术领域的先行者&#xff0c;每年致力于人工智能领域取得技术产品的突破和创新。据爆料称&#xff0c;百度的文心一言有突破了新境界&#xff0c;开创了文心大模型4.0会员版本。从线上的to C产品到试水商业化&#xff0c;百度都是争先走…

接口测试工具

接口测试的重要性 接口测试&#xff1a; 直接对后端服务的测试&#xff0c;是服务端性能测试的基础&#xff0c;是测试工程师的必备技能。 接口测试的概念 接口&#xff1a;系统之间数据交互的通道 接口测试&#xff1a;校验接口响应数据与预期数据是否一致 接口信息解析 …

elform-item动态prop

先来看看我这个变态而又复杂的需求&#xff01; 目前自定义表单的前端开发越来越热&#xff0c;开发人员封装好成熟的组件&#xff0c;用户直接拖动生成自己的页面&#xff01;这样的特点就是&#xff1a; 页面中显示的东西&#xff0c;完全是自定义组合的而不是固定的&#…

多门店自助点餐+外卖二合一小程序源码系统 带完整搭建教程

随着餐饮业的快速发展和互联网技术的不断进步&#xff0c;越来越多的餐厅开始采用自助点餐和外卖服务。市场上许多的外卖小程序APP应运而生。下面罗峰来给大家介绍一款多门店自助点餐外卖二合一小程序源码系统。该系统结合了自助点餐和外卖服务的优势&#xff0c;为餐厅提供了一…

如何在在线Excel文档中对数据进行统计

本次我们将用zOffice表格的公式与数据透视表分析样例&#xff08;三个班级的学生成绩&#xff09;。zOffice表格内置了大量和Excel相同的统计公式&#xff0c;可以进行各种常见的统计分析&#xff0c;如平均值、标准差、相关性等。同时&#xff0c;zOffice也有数据透视表功能&a…

IDEA取消git对项目的版本控制

前言 前几天新建项目的时候不小心选了个git仓库&#xff0c;导致这个测试项目一直被git管理着。 解决办法 1 右键项目 选择打开资源目录 2 删除.git文件 把目录下的.git文件删掉 3 删除idea中的git管理 删除完.git文件后&#xff0c;进入idea&#xff0c;右下角会有这样的提…

【Node.js入门之—1.2 部署Node.js开发环境】

Node.js入门之—1.2 部署Node.js开发环境 在 Windows 系统上安装 Node.js 两种文件格式的安装包 Windows安装包&#xff08;.msi&#xff09;Windows二进制文件&#xff08;.exe&#xff09;安装包 检查Node.js版本 node --version 在 Linux 系统上安装 Node.js Linux操…