【机器学习】Kmeans聚类算法

一、聚类简介

Clustering (聚类)是常见的unsupervised learning (无监督学习)方法,简单地说就是把相似的数据样本分到一组(簇),聚类的过程,我们并不清楚某一类是什么(通常无标签信息),需要实现的目标只是把相似的样本聚到一起,即只是利用样本数据本身的分布规律。

聚类算法可以大致分为传统聚类算法及深度聚类算法

  • 传统聚类算法主要是根据原特征+基于划分/密度/层次等方法。

13cde7bd0f29ddfc3053391a50ac5203.png
  • 深度聚类方法主要是根据表征学习后的特征+传统聚类算法。372e17c4b341389f3c3d1d2b2d2e2d89.png

二、kmeans聚类原理

kmeans聚类可以说是聚类算法中最为常见的,它是基于划分方法聚类的,原理是先初始化k个簇类中心,基于计算样本与中心点的距离归纳各簇类下的所属样本,迭代实现样本与其归属的簇类中心的距离为最小的目标(如下目标函数)。666ba8962fced77f1066064c0df00cff.png

其优化算法步骤为:

1.随机选择 k 个样本作为初始簇类中心(k为超参,代表簇类的个数。可以凭先验知识、验证法确定取值);

2.针对数据集中每个样本 计算它到 k 个簇类中心的距离,并将其归属到距离最小的簇类中心所对应的类中;

3.针对每个簇类,重新计算它的簇类中心位置;

4.重复迭代上面 2 、3 两步操作,直到达到某个中止条件(如迭代次数,簇类中心位置不变等)。

50db83aee90e9c932f697d8efb058ef5.png

.... 完整代码可见:https://github.com/aialgorithm/Blog 或文末阅读原文#kmeans算法是初始化随机k个中心点
random.seed(1)
center = [[self.data[i][r] for i in range(1, len((self.data)))]  for r in random.sample(range(len(self.data)), k)]#最大迭代次数iters
for i in range(self.iters):class_dict = self.count_distance() #计算距离,比较个样本到各个中心的的出最小值,并划分到相应的类self.locate_center(class_dict) # 重新计算中心点#print(self.data_dict)print("----------------迭代%d次----------------"%i)print(self.center_dict)  #聚类结果{k:{{center:[]},{distance:{item:0.0}{classify:[]}}}}if sorted(self.center) == sorted(self.new_center):breakelse:self.center = self.new_center
...

可见,Kmeans 聚类的迭代算法实际上是 EM 算法,EM 算法解决的是在概率模型中含有无法观测的隐含变量情况下的参数估计问题。

在 Kmeans 中的隐变量是每个类别所属类别。Kmeans 算法迭代步骤中的 每次确认中心点以后重新进行标记 对应 EM 算法中的 E 步 求当前参数条件下的 Expectation 。而 根据标记重新求中心点 对应 EM 算法中的 M 步 求似然函数最大化时(损失函数最小时)对应的参数 。EM 算法的缺点是容易陷入局部极小值,这也是 Kmeans 有时会得到局部最优解的原因。

三、选择距离度量

kmeans 算法是基于距离相似度计算的,以确定各样本所属的最近中心点,常用距离度量有曼哈顿距离和欧式距离,具体可以见文章【全面归纳距离和相似度方法(7种)】

  • 曼哈顿距离 公式:

69a5608b02fa50dd27c1f2e521767bb7.png
  • 欧几里得距离 公式:

d82e006524bf56e7c7aabfe1e9b8e520.png曼哈顿、欧几里得距离的计算方法很简单,就是计算两样本(x,y)的各个特征i间的总距离。如下图(二维特征的情况)蓝线的距离即是曼哈顿距离(想象你在曼哈顿要从一个十字路口开车到另外一个十字路口实际驾驶距离就是这个“曼哈顿距离”,也称为城市街区距离),红线为欧几里得距离:

c293c0678b6b6c132aa17c305a1d8ffc.png
四、k 值的确定

kmeans划分k个簇,不同k的情况,算法的效果可能差异就很大。K值的确定常用:先验法、手肘法等方法。

  • 先验法

先验比较简单,就是凭借着业务知识确定k的取值。比如对于iris花数据集,我们大概知道有三种类别,可以按照k=3做聚类验证。从下图可看出,对比聚类预测与实际的iris种类是比较一致的。0a696937a0f16e75897711568c575877.pngf54c42c658f9ffdef1ae183352ff4a2c.png

  • 手肘法

可以知道k值越大,划分的簇群越多,对应的各个点到簇中心的距离的平方的和(类内距离,WSS)越低,我们通过确定WSS随着K的增加而减少的曲线拐点,作为K的取值。e2f477f24735eae7e582a019e8e222df.png

手肘法的缺点在于需要人为判断不够自动化,还有些其他方法如:

  • 使用 Gap statistic 方法,确定k值。

  • 验证不同K值的平均轮廓系数,越趋近1聚类效果越好。

  • 验证不同K值的类内距离/类间距离,值越小越好。

  • ISODATA算法:它是在k-均值算法的基础上,增加对聚类结果的“合并”和“分裂”两个操作,确定最终的聚类结果。从而不用人为指定k值。

五、Kmeans的缺陷
5.1 初始化中心点的问题

kmeans是采用随机初始化中心点,而不同初始化的中心点对于算法结果的影响比较大。所以,针对这点更新出了Kmeans++算法,其初始化的思路是:各个簇类中心应该互相离得越远越好。基于各点到已有中心点的距离分量,依次随机选取到k个元素作为中心点。离已确定的簇中心点的距离越远,越有可能(可能性正比与距离的平方)被选择作为另一个簇的中心点。如下代码。

# Kmeans ++ 算法基于距离概率选择k个中心点# 1.随机选择一个点center = []center.append(random.choice(range(len(self.data[0]))))# 2.根据距离的概率选择其他中心点for i in range(self.k - 1):weights = [self.distance_closest(self.data[0][x], center) for x in range(len(self.data[0])) if x not in center]dp = [x for x in range(len(self.data[0])) if x not in center]total = sum(weights)#基于距离设定权重weights = [weight/total for weight in weights]num = random.random()x = -1i = 0while i < num :x += 1i += weights[x]center.append(dp[x])center = [self.data_dict[self.data[0][center[k]]] for k in range(len(center))]
5.2 核Kmeans

基于欧式距离的 Kmeans 假设了了各个数据簇的数据具有一样的的先验概率并呈现球形分布,但这种分布在实际生活中并不常见。面对非凸的数据分布形状时我们可以引入核函数来优化,这时算法又称为核 Kmeans 算法,是核聚类方法的一种。核聚类方法的主要思想是通过一个非线性映射,将输入空间中的数据点映射到高位的特征空间中,并在新的特征空间中进行聚类。非线性映射增加了数据点线性可分的概率,从而在经典的聚类算法失效的情况下,通过引入核函数可以达到更为准确的聚类结果。

5.3 特征类型

kmeans是面向数值型的特征,对于类别特征需要进行onehot或其他编码方法。此外还有 K-Modes 、K-Prototypes 算法可以用于混合类型数据的聚类,对于数值特征簇类中心我们取得是各特征均值,而类别型特征中心取得是众数,计算距离采用海明距离,一致为0否则为1。

5.4 特征的权重

聚类是基于特征间距离计算,计算距离时,需要关注到特征量纲差异问题,量纲越大意味这个特征权重越大。假设各样本有年龄、工资两个特征变量,如计算欧氏距离的时候,(年龄1-年龄2)² 的值要远小于(工资1-工资2)² ,这意味着在不使用特征缩放的情况下,距离会被工资变量(大的数值)主导。因此,我们需要使用特征缩放来将全部的数值统一到一个量级上来解决此问题。通常的解决方法可以对数据进行“标准化”或“归一化”,对所有数值特征统一到标准的范围如0~1。036b0d6d35a8c241bf7a97d9634a30f0.png

归一化后的特征是统一权重,有时我们需要针对不同特征赋予更大的权重。假设我们希望feature1的权重为1,feature2的权重为2,则进行0~1归一化之后,在进行类似欧几里得距离(未开根号)计算的时候,2f052049806f3395c30b27584768641e.png我们将feature2的值乘根号2就可以了,这样feature2对应的上式的计算结果会增大2倍,从而简单快速的实现权重的赋权。如果使用的是曼哈顿距离,特征直接乘以2 权重也就是2 。

如果类别特征进行embedding之后的特征加权,比如embedding为256维,则我们对embedding的结果进行0~1归一化之后,每个embedding维度都乘以 根号1/256,从而将这个类别全部的距离计算贡献规约为1,避免embedding size太大使得kmeans的聚类结果非常依赖于embedding这个本质上是单一类别维度的特征。

5.5 特征的选择

kmeans本质上只是根据样本特征间的距离(样本分布)确定所属的簇类。而不同特征的情况,就会明显影响聚类的结果。当使用没有代表性的特征时,结果可能就和预期大相径庭!比如,想对银行客户质量进行聚类分级:交易次数、存款额度就是重要的特征,而如客户性别、年龄情况可能就是噪音,使用了性别、年龄特征得到的是性别、年龄相仿的客户!

对于无监督聚类的特征选择:

  • 一方面可以结合业务含义,选择贴近业务场景的特征。

  • 另一方面,可以结合缺失率、相似度、PCA等常用的特征选择(降维)方法可以去除噪音、减少计算量以及避免维度爆炸。再者,如果任务有标签信息,结合特征对标签的特征重要性也是种方法(如xgboost的特征重要性,特征的IV值。)

  • 最后,也可以通过神经网络的特征表示(也就深度聚类的思想。后面在做专题介绍),如可以使用word2vec,将高维的词向量空间以低维的分布式向量表示。

参考文献: 

1、https://www.bilibili.com/video/BV1H3411t7Vk?spm_id_from=333.999.0.0 

2、https://zhuanlan.zhihu.com/p/407343831 

3、https://zhuanlan.zhihu.com/p/78798251

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/164610.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows系统C++语言环境下通过SDK进行动作捕捉数据传输

NOKOV度量动作捕捉系统可以与市面上主流的操作系统和编程语言实现通信。可以在Windows系统C语言环境下通过SDK进行动作捕捉数据传输。 一、形影软件设置 1、实时模式和后处理模式都可以通过SDK传输数据。以后处理模式为例。将模式切换到后处理模式 2、加载一个刚体数据 3、打…

Nat. Med. | 基于遗传学原发部位未知癌症的分类和治疗反应预测

今天为大家介绍的是来自Alexander Gusev团队的一篇论文。原发部位未知癌症&#xff08;Cancer of unknown primary&#xff0c;CUP&#xff09;是一种无法追溯到其原发部位的癌症&#xff0c;占所有癌症的3-5&#xff05;。CUP缺乏已建立的靶向治疗方法&#xff0c;导致普遍预后…

SAPCRM销售订单集成创建

一、概述 越来越多的公司在数字化转型项目中不仅只上线SAP系统&#xff0c;而是将各模块外围系统同步上线&#xff0c;因此对于业务顾问来说&#xff0c;不只要写增强&报表的FS&#xff0c;还要提供外围系统集成的接口规范&#xff0c;以及集成方案&#xff0c;本文分享一…

【FastCAE源码阅读5】使用VTK实现鼠标拾取对象并高亮

鼠标拾取对象是很多软件的基本功能。FastCAE的拾取比较简单&#xff0c;是通过VTK实现的。 对几何而言&#xff0c;拾取类型切换在工具栏上&#xff0c;单击后再来单击视图区对象进行拾取&#xff0c;拾取后的对象会高亮显示。效果如下图&#xff1a; 一、拾取对象 拾取对象…

京东数据分析:2023年9月京东打印机行业品牌销售排行榜

鲸参谋监测的京东平台9月份打印机市场销售数据已出炉&#xff01; 鲸参谋数据显示&#xff0c;今年9月&#xff0c;京东平台打印机的销量为60万&#xff0c;环比增长约32%&#xff0c;同比下滑约25%&#xff1b;销售额为5亿&#xff0c;环比增长约35%&#xff0c;同比下滑约29%…

Spark 基础知识点

Spark 基础 本文来自 B站 黑马程序员 - Spark教程 &#xff1a;原地址 什么是Spark 什么是Spark 1.1 定义&#xff1a;Apache Spark是用于大规模数据&#xff08;large-scala data&#xff09;处理的统一&#xff08;unified&#xff09;分析引擎 Spark最早源于一篇论文 Re…

MySQL第八讲·如何进行数学计算、字符串处理和条件判断?

你好&#xff0c;我是安然无虞。 文章目录 如何进行数学计算、字符串处理和条件判断&#xff1f;数学函数字符串函数条件判断函数总结 如何进行数学计算、字符串处理和条件判断&#xff1f; MySQL 提供了很多功能强大&#xff0c;而且使用起来非常方便的函数&#xff0c;包括…

「掌握创意,释放想象」——Photoshop 2023,你的无限可能!

Adobe Photoshop 2023(PS2023) 来了,全世界数以百万计的设计师、摄影师和艺术家使用 Photoshop 将不可能变为可能。从海报到包装&#xff0c;从基本的横幅到漂亮的网站&#xff0c;从令人难忘的徽标到引人注目的图标&#xff0c;Photoshop 2023让创意世界不断前进。借助直观的工…

C语言编写一个程序采集招聘信息

因为在这里无法详细解释每行代码和步骤。但是&#xff0c;我可以给大家一个使用Python和requests库编写的简单爬虫程序的例子&#xff0c;它可以从网站上获取招聘信息。你可以根据这个例子&#xff0c;将其改写为使用C语言编写的爬虫程序。 import requests# 指定爬虫IP信息 pr…

visual studio Python 配置QGIS(qgis)教程

visual studio Python 配置QGIS&#xff08;qgis&#xff09;教程 这个教程全网独一份啊&#xff0c;博主是自己摸索出来的。 visual studio Python 配置QGIS&#xff08;qgis&#xff09;环境一共分为两部&#xff1a; 第一步安装QGIS&#xff1a; 下载链接如下 https://www…

apachesolr启动带调试

这里solr.cmd报错&#xff0c;报错原因是java版本问题&#xff0c;后面发现这是因为多个java版本导致读取java_home失败&#xff0c; 那么我们修改solr.cmd中的JAVA_HOME为SOLR_JAVA_HOME IF DEFINED SOLR_JAVA_HOME set "JAVA_HOME%SOLR_JAVA_HOME%"环境变量将SOLR…

thinkphp的路径参数(RESTFul风格),把参数写在路径里

thinkphp官方文档 https://www.kancloud.cn/manual/thinkphp5_1/353969 有一个Blog控制器&#xff0c;里面的read方法是固定的&#xff0c;不能该 route.php里添加如下代码&#xff0c;访问 blog对应的就是 android/blog Route::resource(blog,android/blog);然后访问路径