Netty入门指南之NIO Buffer详解

作者简介:☕️大家好,我是Aomsir,一个爱折腾的开发者!
个人主页:Aomsir_Spring5应用专栏,Netty应用专栏,RPC应用专栏-CSDN博客
当前专栏:Netty应用专栏_Aomsir的博客-CSDN博客

文章目录

  • 参考文献
  • 前言
  • ByteBuffer组织结构
  • ByteBuffer的获取方式
  • ByteBuffer核心结构
  • 结构图例演示
    • 1、Buffer初创建
    • 2、Buffer写入部分数据后
    • 3、调用flip读方法
    • 4、调用clear写方法
    • 5、调用compact方法
    • 6、代码演示
  • Buffer有关核心API
    • 写数据进Buffer
      • 从Buffer读数据
      • Channel#write()方法
      • Buffer#rewind()方法
      • Buffer#mark()&reset()方法
  • 字符串操作
    • 字符串存储到Buffer中
  • 总结

参考文献

  • 孙哥suns说Netty
  • Netty官方文档

前言

在上一篇文章中,简单介绍了Buffer是什么,怎么获取Buffer,如何使用Buffer的读写操作等,对于我们NIO的两个核心组件:Channel和Buffer,更为重要的是Buffer,Channel只是建立通道的一个管道,Buffer是实际用来存储数据的。

ByteBuffer组织结构

Buffer是一个抽象类,它有多个抽象子类,包括ByteBufferLongBufferStringCharBuffer等。在这些子类中,我们主要关注ByteBuffer,这是其中一个具体实现的抽象类。ByteBuffer具有两个主要的继承类:MappedByteBufferHeapByteBuffer

MappedByteBuffer类下有一个继承类,名为DirectByteBuffer,代表直接内存,即操作系统内存。而HeapByteBuffer则代表JVM的堆内存。两者之间的区别在于,JVM堆内存上的读写操作效率较低,受垃圾回收的影响,而操作系统的直接内存允许高效的读写操作,但用完不对直接内存进行析构可能会造成内存泄漏。
在这里插入图片描述

ByteBuffer的获取方式

我们可以通过两种方式获取ByteBuffer。第一种方式是使用ByteBuffer的allocate方法创建,这种方式需要在创建时指定大小,一旦分配了大小后,无法动态扩容。第二种方式是使用Charset的encode方法

ByteBuffer.allocate(10);CharsetEncoder.encode()

ByteBuffer核心结构

  • ByteBuff是一个类似数组的结构,整个结构中包含有三个主要的状态
    • Capacity:即Buffer的容量,类似数组的size
    • Position:即Buffer当前缓存的下标,在读取操作时记录读到了哪个位置;在写操作时记录写
    • Limit:读写限制,在读操作时,设置了你能读多少字节的数据;在写操作时,设置你还能写多少字节的数据

所谓的读写模式,是程序相对Buffer的,本质上就是这几个状态的变化。主要有Position和Limit联合决定了Buffer的读写区域数据

注意:刚创建出来的Buffer默认为写模式,代表程序和Channel可以往里面写数据

结构图例演示

上面,我们通过文字方式详细介绍了Netty中ByteBuffer的核心结构。接下来,我将逐步使用图例来讲解这三个核心组件在读写操作时的变化

1、Buffer初创建

ByteBuffer在初始创建时默认为写模式,允许程序和Channel向其中写入数据。此时,Position指向Buffer的最开头,Capacity指向最末尾,而Limit也指向最末尾。Position与Limit之间的这段区间表示了可用于写入数据的有效空间
在这里插入图片描述

2、Buffer写入部分数据后

当我们通过程序或Channel向Buffer中写入部分数据后,如下图所示:Position指向最后一个数据的索引位置,同时Limit和Capacity都位于数据的最后位置
在这里插入图片描述

3、调用flip读方法

在之前的图中,我们往Buffer中写入了四条数据:1、2、3和4。此时,当我们调用flip方法以切换到读模式时,Position会指向Buffer的最开头,而Limit会指向写模式下Position的位置。接下来,我们可以从Buffer中读取数据了。每读取一个数据,Position就会向后移动一个位置,直到与Limit重合
在这里插入图片描述

4、调用clear写方法

当在读模式下从Buffer中读取数据,但还未读取完全就需要切换为写模式时,如果直接使用clear方法,会导致三个指针恢复到初始状态,且未被读取的数据会被直接覆盖。因此,一般情况下我们避免使用clear方法来切换模式,以免丢失未读完的数据
在这里插入图片描述

5、调用compact方法

另一个用于Buffer写模式的方法是compact。当我们从Buffer中读取数据时,如果还未读取到Limit的位置就需要切换为写模式。如果我们使用clear方法切换到写模式,那么Position与Limit之间未被读取的数据将全部丢失,这可能不符合我们的开发需求。因此,我们可以使用compact方法。该方法会将Position与Limit之间未被读取的数据压缩到Buffer的最开始,然后将Position指向未被读取数据的最后索引位置,同时将Limit指向Capacity,以便后续写入操作。
在这里插入图片描述

6、代码演示

public class TestNIO4 {@Testpublic void testState1() {ByteBuffer buffer = ByteBuffer.allocate(10);System.out.println("buffer.capacity() = " + buffer.capacity());System.out.println("buffer.position() = " + buffer.position());System.out.println("buffer.limit() = " + buffer.limit());}@Testpublic void testState2() {ByteBuffer buffer = ByteBuffer.allocate(10);buffer.put(new byte[]{'a','b','c','d'});System.out.println("buffer.capacity() = " + buffer.capacity());System.out.println("buffer.position() = " + buffer.position());System.out.println("buffer.limit() = " + buffer.limit());}@Testpublic void testState3() {ByteBuffer buffer = ByteBuffer.allocate(10);buffer.put(new byte[]{'a','b','c','d'});buffer.flip();  // 切换读模式System.out.println("buffer.capacity() = " + buffer.capacity());System.out.println("buffer.position() = " + buffer.position());System.out.println("buffer.limit() = " + buffer.limit());}@Testpublic void testState4() {ByteBuffer buffer = ByteBuffer.allocate(10);buffer.put(new byte[]{'a','b','c','d'});buffer.clear();  // 切换读模式System.out.println("buffer.capacity() = " + buffer.capacity());System.out.println("buffer.position() = " + buffer.position());System.out.println("buffer.limit() = " + buffer.limit());}@Testpublic void testState5() {ByteBuffer buffer = ByteBuffer.allocate(10);buffer.put(new byte[]{'a','b','c','d'});buffer.flip();  // 切换写模式System.out.println("buffer.get() = " + (char) buffer.get());  // aSystem.out.println("buffer.get() = " + (char) buffer.get());  // bSystem.out.println("buffer.capacity() = " + buffer.capacity());  // 10System.out.println("buffer.position() = " + buffer.position());  // 2System.out.println("buffer.limit() = " + buffer.limit());        // 4System.out.println("----------------------------------");buffer.compact();  // 切换写模式System.out.println("buffer.capacity() = " + buffer.capacity());  // 10System.out.println("buffer.position() = " + buffer.position());  // 2System.out.println("buffer.limit() = " + buffer.limit());        // 10buffer.flip();System.out.println("buffer.get() = " + (char) buffer.get());     // c}
}

Buffer有关核心API

写数据进Buffer

  • Channel的read方法:channel.read(buffer)
  • Buffer的put方法
    • buffer.put(byte)
    • buffer.put(byte[])

从Buffer读数据

  • Buffer的get方法:每调用一次都会影响Position的位置
  • Buffer的get(i)方法,用于获取特定Position上的数据,但是不会对Position产生影响
  • 如下还有三个文件

Channel#write()方法

在上一篇文章中,我们演示了如何使用FileInputStream和FileOutputStream流来执行文件读取和写入操作,通过输入流从文件中获取数据流,并通过输出流将程序中的字节写回文件。然而,在NIO中,我们使用Channel来进行文件操作,而Channel是无方向性的。这意味着我们可以使用Channel的write()方法,从Buffer中读取数据并将其写入文件中。

public class TestNIO11 {public static void main(String[] args) throws Exception{// 1.获取channelFileChannel channel = new FileOutputStream("data1.txt").getChannel();// 2.获取buffer并填入数据String data = "Aomsir";ByteBuffer buffer = ByteBuffer.allocate(10);buffer.put(data.getBytes());// 3.读取buffer中的内容并写入channelchannel.write(buffer);}
}

Buffer#rewind()方法

当我们从ByteBuffer中读取数据时,Position指针会逐步向前移动。但如果我们希望重新读取已读取的数据,可以使用rewind方法。该方法将Position指针重置到Buffer的开头,允许我们重新读取数据,如下是rewind的代码和我们的测试案例。
在这里插入图片描述

public class TestNIO5 {public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(10);buffer.put(new byte[]{'a','b','c','d'});buffer.flip();while (buffer.hasRemaining()) {System.out.println("buffer.get() = " + (char) buffer.get());}System.out.println("-----------------------------");buffer.rewind();   // 重新获取数据(因为读完以后数据没有删除,只是position和limit重合)while (buffer.hasRemaining()) {System.out.println("buffer.get() = " + (char) buffer.get());}}
}

Buffer#mark()&reset()方法

除了rewind()方法可以将position置为最初状态,如果我们想要重复读取某一个区间的内容,Buffer还提供了两个有用的方法:mark()和reset()。mark()方法可以帮助我们记住当前position的位置,而reset()方法则允许我们后续回退到position的位置,以便重复读取特定区间的数据。

public class TestNIO6 {public static void main(String[] args) {ByteBuffer buffer = ByteBuffer.allocate(10);buffer.put(new byte[]{'a','b','c','d'});buffer.flip();System.out.println("buffer.get() = " + (char) buffer.get());  // aSystem.out.println("buffer.get() = " + (char) buffer.get());  // bbuffer.mark();  // 打标记System.out.println("buffer.get() = " + (char) buffer.get());  // cSystem.out.println("buffer.get() = " + (char) buffer.get());  // dbuffer.reset();  // 跳回标记点System.out.println("buffer.get() = " + (char) buffer.get());  // cSystem.out.println("buffer.get() = " + (char) buffer.get());  // d}
}

字符串操作

字符串存储到Buffer中

将字符串存入ByteBuffer是一项相对简单的任务,可以使用buffer.put(“Aomsir”.getBytes())。然而,这种方式受当前Java文件的字符编码类型影响。如果当前Java文件使用UTF-8字符集,但我们要存入的字符串包含汉字,可能在读取时会出现问题。因此,通常会选择另一种方式创建ByteBuffer,即使用Charset的encode()方法,这种方法允许我们明确指定字符编码集。需要注意的是,encode方法会自动调用flip读方法,不像之前的ByteBuffer.allocate()方法默认是写模式,所以这里无需显式调用flip方法,否则limit和position都会被重置为0。

public class TestNIO8 {public static void main(String[] args) {// 使用指定字符集直接创建Buffer并填入数据ByteBuffer buffer = Charset.forName("UTF-8").encode("aomsir");// 不用切换为读模式,因为上面的encode方法已经调用了,再调用一次就会导致position=0,limit=0// buffer.flip();while (buffer.hasRemaining()) {System.out.println("buffer.get() = " + (char) buffer.get());}buffer.clear();}
}

总结

ByteBuffer是整个NIO体系中的核心组件,今天我们花了一篇文章的时间来深入学习它的结构、读写模式以及常见API等内容。这将为我们未来学习Netty奠定坚实的基础

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/165273.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL库的库操作指南

1.创建数据库 一般格式:create database (if not exists) database1_name,database2_name...... 特殊形式: create database charset harset_name collate collate_name 解释: 红色字是用户自己设置的名称charset:指定数据…

Jupyter Notebook 内核似乎挂掉了,它很快将自动重启

报错原因: OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized. OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade perfo…

STM32两轮平衡小车原理详解(开源)

一、引言 关于STM32两轮平衡车的设计,我想在读者阅读本文之前应该已经有所了解,所以本文的重点是代码的分享和分析。至于具体的原理,我觉得读者不必阅读长篇大论的文章,只需按照本文分享的代码自己亲手制作一辆平衡车&#xff0c…

OSPF下的MGRE实验

一、实验要求 1、R1-R3-R4构建全连的MGRE环境 2、R1-R5-R6建立hub-spoke的MGRE环境,其中R1为中心 3、R1-R3...R6均存在环回网段模拟用户私网,使用OSPF使全网可达 4、其中R2为ISP路由器,仅配置IP地址 二、实验拓扑图 三、实验配置 1、给各路…

OAuth2.0双令牌

OAuth 2.0是一种基于令牌的身份验证和授权协议,它允许用户授权第三方应用程序访问他们的资源,而不必共享他们的凭据。 在OAuth 2.0中,通常会使用两种类型的令牌:访问令牌和刷新令牌。访问令牌是用于访问资源的令牌,可…

SpringBoot定时任务打成jar 引入到新的项目中后并自动执行

一、springBoot开发定时任务 ①&#xff1a;连接数据库实现新增功能 1. 引入依赖 <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><optional>true</optional> </dependency> <dependen…

c语言贪吃蛇项目的实现

ncurse的引入 ncurse的概念 ncurse(new curses)是一套编程库&#xff0c;它提供了一系列的函数&#xff0c;以便使用者调用它们去生成基于文本的用户界面。 ncurses是一个能提供功能键定义(快捷键),屏幕绘制以及基于文本终端的图形互动功能的动态库。ncurses用得最多的地方是…

计网----累积应答,TCP的流量控制--滑动窗口,粘包问题,心跳机制,Nagle算法,拥塞控制,TCP协议总结,UDP和TCP对比,中介者模式

计网----累积应答&#xff0c;TCP的流量控制–滑动窗口&#xff0c;粘包问题&#xff0c;心跳机制&#xff0c;Nagle算法&#xff0c;拥塞控制&#xff0c;TCP协议总结&#xff0c;UDP和TCP对比&#xff0c;中介者模式 一.累积应答 1.什么是累计应答 每次发一些包&#xff0…

print(torch.cuda.is_available()) False如何解决?GTX3090

首先介绍环境&#xff1a; 保证Cuda与Pytorch的版本对齐就可以了。 nvcc -V 查看原来装的是cuda11.3版本 去Pytorch官网找到相应指令下载即可&#xff1a; CtrlF&#xff1a;cuda11.3 就在诸多版本中找到啦,一定找 torch的版本cuda版本。我之前错误安装的torch&#xff0c;只…

【ES专题】ElasticSearch功能详解与原理剖析

目录 前言要点阅读对象阅读导航前置知识笔记正文一、ES数据预处理1.1 Ingest Node&#xff1a;摄入节点1.2 Ingest Pipeline&#xff1a;摄入管道1.3 Processor&#xff1a;预处理器——简单加工1.4 Painless Script&#xff1a;脚本——复杂加工1.5 简单实用案例 二、文档/数据…

Kyligence Copilot 亮相第六届进博会,增添数智新活力

11月5日&#xff0c;第六届中国国际进口博览会&#xff08;以下简称“进博会”&#xff09;在上海国家会展中心盛大启幕&#xff0c;众多新科技、新成果、新展品亮相本届进博会。作为阿斯利康&#xff08;AstraZeneca&#xff09;合作伙伴&#xff0c;跬智信息&#xff08;Kyli…

如何上传自己的Jar到Maven中央仓库

在项目开发过程中&#xff0c;我们常常会使用 Maven 从仓库拉取开源的第三方 Jar 包。本文将带领大家将自己写好的代码或开源项目发布到 Maven中央仓库中&#xff0c;让其他人可以直接依赖你的 Jar 包&#xff0c;而不需要先下载你的代码后 install 到本地。 注册帐号 点击以…