Python - 利用 OCR 技术提取视频台词、字幕

目录

一.引言

二.视频处理

1.视频样式

2.视频截取

◆ 裁切降帧

◆ 处理效果

3.视频分段

三.OCR 处理

1.视频帧处理

2.文本识别结果

3.后续工作与优化

◆ 识别去重

◆ 多线程提效

◆ 片头片尾优化

四.总结


一.引言

视频经常会配套对应的台词或者字幕,通过文本与字幕可以更好地理解视频内容。本文介绍如何使用 moviepy 库处理视频并使用 paddleocr 库实现视频文本识别,从而获取视频中出现的文字信息。

二.视频处理

1.视频样式

样例中我们以老电视剧 <三国演义> 为例,处理其剧集信息并获取对话文本。

视频中字幕展示位置位于视频正下发居中位置,为了减少 OCR 的识别工作量,提高 OCR 识别成功率,我们会优先对视频截取,只保留下方台词部分的关键帧信息。

2.视频截取

裁切降帧

    from moviepy.editor import *# 对视频进行裁剪与缩放clip = VideoFileClip('/Users/Desktop/1.mkv')print("Ori FPS:{} Duration:{} Height:{} Width:{}".format(clip.fps, clip.duration, clip.w, clip.h))cut_clip = clip.crop(y2=clip.h - 11, height=70)cut_clip = cut_clip.set_fps(3)print("Cut FPS:{} Duration:{} Height:{} Width:{}".format(cut_clip.fps, cut_clip.duration, cut_clip.w, cut_clip.h))

- VideoFileClip

电影文件的视频剪辑类,必传的只有 filename 即视频文件的名称。它支持多种视频格式: .ogov、.mp4、.mpeg、.avi、.mov、.mkv 等。这里下载的 <三国演义> 使用的是 .mkv 格式。

- crop

crop 方法用于裁切视频。x1、y1 代表裁剪区域的左上角坐标。默认为视频的左上角;x2、y2 代表裁剪区域的右下角坐标。默认为视频的右下角。width,height 代表裁剪区域的宽度和高度。如果设置了这两个参数,x2、y2 的值将被忽略。center 代表裁剪区域的中心点坐标,如果设置了这个参数,x1、y1、x2、y2 的值将被忽略。所有坐标值都是以像素为单位的。当剪辑是图像剪辑时,可以进一步通过指定参数来优化裁剪效果。上面的参数含义表示将 clip 视频的底部向上 11 个像素开始裁剪,向上裁剪出 70 个像素高度的新片段,获得剪辑后的新视频。

- set_fps

set_fps 参数是用于设置帧率的。帧率是指在视频中每秒钟展示多少个连续的画面,单位是 fps(frames per second),译为 '每秒帧数'。如果你想让视频播放得更流畅,可以将帧率设置得更高。原始视频帧率较高 FPS=25,由于 OCR 识别相同帧内容可能相同,所以我们 set_fps(3) 以降低需要处理的视频帧数量,提高效率。

处理效果

Ori FPS:25.0 Duration:2625.36 Height:704 Width:528
Cut FPS:3 Duration:2625.36 Height:704 Width:70

通过打印视频关键信息,我们得到裁切后的视频参数,可以看到新的视频宽度已缩减,且 FPS 帧率也下降为每秒 3 帧:

这里不同视频字母位置不同,大家可以本地测试几次,就能大致选到合适的位置参数。

3.视频分段

    epoch = 10step = cut_clip.duration / epoch# 截取多个片段clips = []index = 0while index < epoch:# 获取分段的起止时间start = index * stepend = min(start + step, clip.duration)if start < clip.duration:sub_clip = cut_clip.subclip(start, end)print("index: {} start: {} end: {}".format(index, start, end))clips.append([start, sub_clip])else:breakindex += 1

为了并发处理视频帧,我们可以将视频分为多段 cut,每一个 cut 启动一个 Process 进行 OCR 识别,所以我们通过 subclip 方法对视频进行了分段截取。这里 start、end 对应视频的秒数,通过 clip.duration 可以获取视频的总长,自定义分段数即可,这里我们划分 10 段:

可以通过 save 方法将每个分段保存到目录下供本地检查和校对:

三.OCR 处理

1.视频帧处理

    from paddleocr import PaddleOCRdef process_frame_by_ocr(st, tmp_clip):ocr = PaddleOCR(use_angle_cls=True, lang="ch", use_gpu=True)frame_rate = 1 / 3for cnt, cur_frame in enumerate(tmp_clip.iter_frames()):cur_start = frame_rate * (cnt + 1) + sttry:# det=True 表示在进行光学字符识别(OCR)之前,先对图像进行检测。result = ocr.ocr(cur_frame, det=True)if result is not None:see = result[0][0][1]cur_time = int(cur_start)doc_json = {'st': cur_time, "text": see}ocr_text = json.dumps(doc_json, ensure_ascii=False)open('result.json', 'a', encoding='utf-8').write(ocr_text + '\n')except Exception:pass

这里引入 paddleocr 库进行视频帧的 OCR 文字识别,由于我们修改刷新率 FPS=3,所以每 s 有3帧视频,这里通过 frame_rate 记录每一帧出现的时间,其次调用 .ocr 方法识别图像,如果 result 识别到字幕即 text,我们会 'a' 添加至我们的 result.json 中并记录该台词出现的时间。下图为运行日志,由于识别过程中可能存在无字幕的情况,针对这类情况直接 pass:

2.文本识别结果

result.json 中会保存字幕在视频中出现的对应时间,text 除了识别内容外,还有一个概率标识其置信度,置信度越高,识别效果越靠谱。

3.后续工作与优化

识别去重

我们看到,虽然设置了 FPS=3,但是重复的文本还是很多,在得到原始的 result.json 文件后,我们还需要对文件进行去重和优选的步骤,一方面我们可以根据时间先后和字符长度,选择更为完整的句子,另一方面我们可以标胶不同识别结果的置信度,我们可以取数值更高置信度更高的样本作为最终结果。

多线程提效

我们可以尝试使用 multiprocessing 多线程处理多个分段任务,这里处理一集大约耗时为 5 min,采用多线程可以大大提高处理的效率。

[2023/11/09 14:14:15] ppocr DEBUG: rec_res num  : 0, elapsed : 1.1920928955078125e-06
...
[2023/11/09 14:19:30] ppocr DEBUG: rec_res num  : 0, elapsed : 0.0

片头片尾优化

查看 result.json 的前端部分可以看到类似的滚动识别字幕,这是因为片头曲的滚动字幕造成的。我们可以像视频 APP 那样掐头去尾,获取更纯净的视频内容。这与片头片尾时间,最简单的就是我们打开视频掐一下,转换成 s 单位即可。

四.总结

本文介绍了基本的视频截取与识别的方法,就功能性而言,其实现了基本的功能。但是就结果而言,如果想要获取一些传统剧集的字幕与时间,我们可以直接到对应的字幕网站或者解析视频自带的字幕 SRT 文件,肥肠的方便:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/168393.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

react 实现chatGPT的打印机效果 兼容富文本,附git地址

1、方式一 &#xff1a;使用插件 typed.js typed.js 网站地址&#xff0c;点我打开 1.1、核心代码如下&#xff1a; //TypeWriteEffect/index.tsx 组件 import React, { useEffect, useRef } from react; import Typed from typed.js; import { PropsType } from ./index.d;…

【Git】GUI图形化界面的使用SSH协议IDEA集成Git

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于Git的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一. GUI图形化界面的使用 1.使用Gui​ 2.常…

2023年【北京市安全员-C3证】考试题库及北京市安全员-C3证在线考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 北京市安全员-C3证考试题库是安全生产模拟考试一点通总题库中生成的一套北京市安全员-C3证在线考试&#xff0c;安全生产模拟考试一点通上北京市安全员-C3证作业手机同步练习。2023年【北京市安全员-C3证】考试题库及…

抢量双11!抖音商城「官方立减」 缘何成为“爆单神器”?

10月20日抖音商城双11好物节正式开跑&#xff0c;仅仅三天&#xff0c;抖音商城整体GMV对比去年同期提升了200%&#xff0c;而在开跑一周后&#xff0c;一些品牌的销售额已经超过了今年整个618&#xff0c;可谓增势迅猛。其中&#xff0c;平台官方特别推出的「官方立减」玩法&a…

【数据结构】单链表OJ题(一)

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《Linux》《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 文章目录 前言一、移除链表元素二、寻找链表中间结点三、输出链表倒数第k个结点四、反转单链表五…

Sprint Boot 学习路线 4

微服务 Spring Microservices是一个框架&#xff0c;它使用Spring框架更容易地构建和管理基于微服务的应用程序。微服务是一种架构风格&#xff0c;其中一个大型应用程序被构建为一组小型、独立可部署的服务。每个服务具有明确定义的职责&#xff0c;并通过API与其他服务通信。…

好物周刊#30:Github 上大学

https://github.com/cunyu1943/JavaPark https://yuque.com/cunyu1943 村雨遥的好物周刊&#xff0c;记录每周看到的有价值的信息&#xff0c;主要针对计算机领域&#xff0c;每周五发布。 一、项目 1. Fighting Design 一款灵活、优质的组件库&#xff0c;可在 vue3 应用程…

记事本简单运行java代码,理解程序运行

1.记事本创建一个文件, 把后缀.txt改为.java 如果没有显示尾缀, 勾选出文件扩展名 2.在文件里面编辑java代码并保存 3.在当前目录打开cmd 4.执行 javac Test.java 会生成好编译的.class文件 5.执行下面代码, 就成功得到j编写ava打印的代码 java Test 6.注意上面的中文在cmd中…

[autojs]用户界面GUI编程

用户界面: UI视图: View attr(name, value)attr(name)whidgravitylayout_gravitymarginmarginLeftmarginRightmarginTopmarginBottompaddingpaddingLeftpaddingRightpaddingToppaddingBottombgalphaforegroundminHeightminWidthvisibilityrotationtransformPivotXtransformPivo…

uni-app基于vite和vue3创建并集成pinia实现数据持久化

一、uni-app基于Vite和Vue3创建并集成pinia实现数据持久化 文章目录 一、uni-app基于Vite和Vue3创建并集成pinia实现数据持久化1.如何创建基于Vite和Vue3的uni-app项目&#xff1f;2.选择其中一个分支&#xff0c;就是一个脚手架 二、以下都是基于vite-ts版本创建和配置1.目录结…

数据结构与算法-(11)---有序表(OrderedList)

&#x1f308;个人主页: Aileen_0v0 &#x1f525;系列专栏:PYTHON学习系列专栏 &#x1f4ab;"没有罗马,那就自己创造罗马~" 目录 知识回顾及总结 有序表的引入 ​编辑 实现有序表 1.有序表-类的构造方法 2.有序表-search方法的实现 3.有序表-add方法的实现…

【编程语言发展史】Go语言的发展历史

目录 Go的起源 Go语言发展时间轴 logo Go的起源 Go 语言起源 2007 年&#xff0c;并于 2009 年正式对外发布。它从 2009 年 9 月 21 日开始作为谷歌公司 20% 兼职项目&#xff0c;即相关员工利用 20% 的空余时间来参与 Go 语言的研发工作。该项目的三位领导者均是著名的 …