【电路笔记】-节点电压分析和网状电流分析

节点电压分析和网状电流分析

文章目录

  • 节点电压分析和网状电流分析
    • 1、节点电压分析
      • 1.1 概述
      • 1.2 示例
    • 2、网格电流分析
      • 2.1 概述
      • 2.2 示例
    • 3、总结

正如我们在上一篇介绍电路分析基本定律的文章中所看到的,基尔霍夫电路定律 (KCL) 是计算任何电路中未知电压和电流的强大而高效的工具。 然而,基尔霍夫电路定律有时会带来重复性的不便,并且并不是分析更复杂电路的最快方法。

有两种基于基尔霍夫电路定律的方法可以简化并提高电路分析的效率:节点电压分析和网格电流分析。

我们在本文中分别分两节介绍这两种方法。 在每个部分中,都给出了一个真实的例子来说明如何进行这些分析。

1、节点电压分析

1.1 概述

节点电压分析 (NVA) 基于基尔霍夫电流定律,用于确定电路节点处的未知电压。 它由一系列要遵循的步骤组成,简要列出如下:

  • 1)标记电路的基本节点,基本节点由三个或更多分支之间的连接点组成。
  • 2)选择其中一个节点作为电路的参考。 大多数情况下,它是底部节点。
  • 3)将支路中的电流表示为电压的函数。
  • 4)在参考节点以外的每个节点写出基尔霍夫电流定律。

1.2 示例

假设有图1中所示的以下电子电路,我们将对其执行节点电压分析。 对于数值应用,我们取 S 1 = 10 V S_1=10V S1=10V S 2 = 2 A S_2=2A S2=2A R 1 = 1 Ω R_1=1\Omega R1= R 2 = 5 Ω R_2=5\Omega R2= R 3 = 2 Ω R_3=2\Omega R3= R 4 = 10 Ω R_4=10\Omega R4=10Ω

在这里插入图片描述

图1:带有标记节点、电压和电流的电路示例

在该电路中,我们已经完成了步骤 1 和 2,Node3 已被选为电路的参考(地),并用接地符号表示。

根据步骤 3,我们可以将每个电流 I 1 I_1 I1 I 2 I_2 I2、…、 I 5 I_5 I5 写为 V 12 V_{12} V12 V 13 V_{13} V13 的函数,通过将欧姆定律应用于每个分支来计算电流:

  • I 1 = ( 10 − V 13 ) / R 1 I_1=(10-V_{13})/R_1 I1=(10V13)/R1
  • I 2 = V 13 / R 2 I_2=V_{13}/R_2 I2=V13/R2
  • I 3 = ( V 13 − V 23 ) / R 3 I_3=(V_{13}-V_{23})/R_3 I3=(V13V23)/R3
  • I 4 = V 23 / R 4 I_4=V_{23}/R_4 I4=V23/R4
  • I 5 = − S 2 = − 2 A I_5=-S_2=-2A I5=S2=2A

根据步骤4,我们在Node1和Node2处写出基尔霍夫电流定律:

  • Node1: I 1 − I 2 − I 3 = 0 ⇒ [ ( 10 − V 13 ) / R 1 ] − [ V 13 / R 2 ] − [ ( V 13 − V 23 ) / R 3 ] = 0 I_1-I_2-I_3=0⇒[(10-V_{13})/R_1]-[V_{13}/R_2]-[(V_{13}-V_{23})/R_3]=0 I1I2I3=0[(10V13)/R1][V13/R2][(V13V23)/R3]=0
  • Node 2: I 3 − I 4 − I 5 = 0 ⇒ [ ( V 13 − V 23 ) / R 3 ] − [ V 23 / R 4 ] + S 2 = 0 I_3-I_4-I_5=0 ⇒ [(V_{13}-V_{23})/R_3]-[V_{23}/R_4]+S_2=0 I3I4I5=0[(V13V23)/R3][V23/R4]+S2=0

因此,我们获得了具有 2 个未知参数的 2 个方程的线性系统,可以通过将直线与适当的因子相乘、排列项并用其值替换电阻器和源项来更清晰地重写该方程:

在这里插入图片描述

该系统可以重写为矩阵方程:

在这里插入图片描述

等式1:示例的矩阵方程

这种类型的方程可以很容易地用手或使用MatLab等计算机程序求解,解为 V 13 = 9.1 V V_{13}=9.1V V13=9.1V V 23 = 10.1 V V_{23}=10.1V V23=10.1V

由于每个电流都是这些值的函数,我们可以计算并列出它们:

  • I 1 = ( 10 − 9.1 ) / 1 = 0.9 A I_1=(10-9.1)/1=0.9A I1=(109.1)/1=0.9A
  • I 2 = 9.1 / 5 = 1.8 A I_2=9.1/5=1.8A I2=9.1/5=1.8A
  • I 3 = ( 9.1 − 10.1 ) / 2 = − 0.5 A I_3=(9.1-10.1)/2=-0.5A I3=(9.110.1)/2=0.5A
  • I 4 = 10.1 / 10 = 1 A I_4=10.1/10=1A I4=10.1/10=1A
  • I 5 = − 2 A I_5=-2A I5=2A

2、网格电流分析

2.1 概述

本节介绍了另一种简化基尔霍夫电路定律 的强大方法,例如节点电压分析,称为网状电流分析 (MCA)。 我们没有像之前的方法那样将分析集中在节点周围,而是标记了电路每个网格中循环的电流。 网格仅由一个循环组成,其中没有其他内部循环。

我们在下面列出了执行网格电流分析的以下步骤:

  • 1)电路每个网格上的属性和标签电流。 通常,我们选择顺时针方向正电流
  • 2)对与前面所述的电流方向相同的每个网格应用基尔霍夫电压定律 (KVL)。
  • 3)求解基尔霍夫电压定律分析中出现的循环方程。
  • 4)根据网格电流计算电路中所需的电流或电压。

2.2 示例

假设图 2 中所示的电路,我们将对其执行网格电流分析。 给出不同元件的值: S 1 = 12 V S_1=12V S1=12V S 2 = 6 V S_2=6V S2=6V R 1 = 15 Ω R_1=15\Omega R1=15Ω R 2 = 2 Ω R_2=2\Omega R2= R 3 = 12 Ω R_3=12\Omega R3=12Ω

在这里插入图片描述

图2:执行MCA的电路示例

电路中已经完成第一步,其中网格电流用红色环路符号标记。

正如步骤 2 所示,我们对电路的每个网格应用基尔霍夫电压定律:

  • 方程1: − V 1 + I 1 × ( R 1 + R 2 ) − I 2 × R 2 = 0 -V_1+I_1×(R_1+R_2)-I_2×R_2=0 V1+I1×(R1+R2)I2×R2=0
  • 方程2: V 2 − I 1 × R 2 + I 2 × ( R 2 + R 3 ) = 0 V_2-I_1×R_2+I_2×(R_2+R_3)=0 V2I1×R2+I2×(R2+R3)=0

在我们的例子中,网格电流 I 1 I_1 I1 I 2 I_2 I2 都存在于电阻器 R 2 R_2 R2 上,在两个方程中我们可以看到 R 2 R_2 R2 上的电流被视为 I 1 I_1 I1 I 2 I_2 I2 的代数和。

下面,我们用参数值替换参数,首先,根据第一个方程,我们将 I 1 I_1 I1 表示为 I 2 I_2 I2 的函数:

  • I 1 = ( 12 + 2 × I 2 ) / 17 I_1=(12+2×I_2)/17 I1=(12+2×I2)/17

我们将此项代入方程 2,重新分配各项后,可得出 I 2 = − 1 / 3 A I_2=-1/3A I2=1/3A。我们将此值代入 I 1 I_1 I1 的表达式中,可得出 I 1 = 2 / 3 A I_1=2/3 A I1=2/3A

最后,我们可以给出驱动电路所需的电流 I I = I 1 − I 2 = 1 A II=I_1-I_2=1A II=I1I2=1A

3、总结

  • 我们在本文中介绍了两种基于基尔霍夫电路定律的方法,称为节点电压分析 (NVA) 和网格电流分析 (MCA)。 这些方法可以更有效地分析电路,因为它们通过减少涉及的数学量,比 基于基尔霍夫定律更快地得出解决方案。
  • 每个分析都包含一系列要执行的步骤,这些方法在各自部分的开头单独介绍。
  • 另外,还给出了示例以说明如何使用这两种方法分析电阻电路。 我们可以注意到,对于具有电感器和电容器的电抗电路,NVA 或 MCA 分析会导致需要求解微分方程或微分方程组。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/168441.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于安卓android微信小程序的四六级助手系统

项目介绍 随着我国教育需求不断增加,高校教育资源有限,教育经费相对不足的情况下,利用现代信息技术发展高等教育,不仅充分利用了优秀的教育资源,而且为更多的人提供接受高等教育的机会,同时这也是极大促进…

【11】使用透视投影建立一个3D空间的测试

核心操作: 1.proj view model 这三个矩阵 glm::mat4 mvp m_Proj * m_View * model; m_Shader->Bind(); m_Shader->SetUniformMat4f("u_MVP", mvp);着色器里面就: proj:投影矩阵,可以选择正交投影,或者透视投影…

NtripShare Mos地铁自动化监测终端盒子硬件设计

自动化监测产品到目前为止做了接近一年,在软件层面上,控制终端软件、平台软件、网平差算法都已解决,硬件盒子始终是心里过不去的坎,最终还是没有耐住性子自己做了一把。 选型如下: 1、主板:瑞芯微RK3568主板。 2、外…

为什么要学习去使用云服务器,外网 IP能干什么,MAC使用Termius连接阿里云服务器。保姆级教学

目录 引言 可能有人想问为什么要学习云服务器? (获取Linux环境,获得外网IP) 二、安装教程 引言 可能有人想问为什么要学习云服务器? (获取Linux环境,获得外网IP) 1.虚拟机(下策) …

SplayTree高分测试用例

测试用例结果展示 覆盖率 变异得分 测试注意点 从SplayTree测起,然后再测SubSplayTree,因为前者调用后者。SplaySubTree的remove方法大部分内容需要通过反射才能测到。value和index在SplayTree当中都不是唯一的。一个index可能对应多个value。 不足之…

野火i.MX6ULL开发板检测按键evtest(Linux应用开发)

之前一直查找不到evtest,因为没有下载成功,很可能是网络不好,下次可以软件源可以换成国内大学镜像网站。 重新断开板子电源启动,再次连接网络,下载evtest成功!!

思维模型 多看效应

本系列文章 主要是 分享 思维模型,涉及各个领域,重在提升认知。越熟悉,越喜欢。 1 多看效应的应用 1.1 多看效应在广告和营销领域的应用 1 可口可乐之歌 可口可乐公司在 20 世纪 60 年代推出了“可口可乐之歌”广告,这个广告通…

【苍穹外卖 | 项目日记】第九天 万字总结

前言: 之前就写完了,用了几天补一下项目总结,本文会从宏观上介绍整体项目构架和所应用的技术以及项目亮点,最后再加上我个人的感悟。本文适合打算开始写苍穹外卖的小伙伴阅读,提高对整体项目的认知。 往期项目日记&am…

竞赛选题 深度学习疲劳驾驶检测 opencv python

文章目录 0 前言1 课题背景2 实现目标3 当前市面上疲劳驾驶检测的方法4 相关数据集5 基于头部姿态的驾驶疲劳检测5.1 如何确定疲劳状态5.2 算法步骤5.3 打瞌睡判断 6 基于CNN与SVM的疲劳检测方法6.1 网络结构6.2 疲劳图像分类训练6.3 训练结果 7 最后 0 前言 🔥 优…

Leetcode2834. 找出美丽数组的最小和

Every day a Leetcode 题目来源:2834. 找出美丽数组的最小和 解法1:贪心 从最小正整数 1 开始枚举,设当前数为 num,如果 nums 里没有 target - num,就说明可以添加 num,依次填满直到有 n 个数即可。 用…

[架构之路-246]:目标系统 - 设计方法 - 软件工程 - 需求工程- 需求开发:获取、分析、定义、验证

目录 前言: 架构师为什么需要了解需求分析 一、需求工程概述 1.1 概述 1.2 需求工程的两大部分 (1)需求开发:系统工程师的职责、目标系统开发角度 (2)需求管理:项目管理者的职责、项目管…

嵌入式养成计划-51----ARM--ARM汇编指令--内存读写指令--程序状态寄存器传输指令--软中断指令--混合编程

一百二十七、内存读写指令 通过内存读写指令可以实现向内存中写入指定数据或者读取指定内存地址的数据 127.1 单寄存器内存读写指令 将一个寄存器中的数值写入到内存,或者从内存中读取数据放在某一个指定寄存器中 127.1.1 指令码和功能 1. 向内存中写&#xff…