CIFAR-100数据集的加载和预处理教程

一、CIFAR-100数据集介绍

CIFAR-100(Canadian Institute for Advanced Research - 100 classes)是一个经典的图像分类数据集,用于计算机视觉领域的研究和算法测试。它是CIFAR-10数据集的扩展版本,包含了更多的类别,用于更具挑战性的任务。

CIFAR-100包含了100个不同的类别,每个类别都包含600张32x32像素的彩色图像。

这100个类别被划分为20个大类别,每个大类别包含5个小类别。这个层次结构使得数据集更加丰富,包含了各种各样的对象和场景。每张图像的大小是32x32像素,包含RGB三个通道。

用途: CIFAR-100常被用于评估图像分类算法的性能。由于图像分辨率相对较低,它在实际中可能不太适用于一些复杂的计算机视觉任务,但对于学术研究和算法开发而言是一个常见的基准数据集。

二、下载并加载CIFAR-100数据集

import torch
from torch.utils.data import Dataset,DataLoader
import torchvision
import torchvision.transforms as transformsdef get_train_loader(mean, std, batch_size=16, num_workers=2, shuffle=True):transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize(mean, std)])cifar100_training = torchvision.datasets.CIFAR100(root='./data', train=True, download=True,transform=transform_train)cifar100_training_loader = DataLoader(cifar100_training, shuffle=shuffle, num_workers=num_workers, batch_size=batch_size)return cifar100_training_loaderdef get_val_loader(mean, std, batch_size=16, num_workers=2, shuffle=True):transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean, std)])cifar100_test = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test)cifar100_test_loader = DataLoader(cifar100_test, shuffle=shuffle, num_workers=num_workers, batch_size=batch_size)return cifar100_test_loader

这里我们采用的是torchvision下载CIFAR-100数据集并将其保存到指定的路径,定义这两个函数 get_train_loader 和 get_val_loader 分别用于获取训练集和验证集的数据加载器,并进行了预处理和增强的操作。

三、检测数据加载情况

博主曾经在这上面吃过很多的亏,一般我们遇到维度不匹配的情况,通常会认为是网络的问题,但我会告诉你也有可能是数据加载的部分,这种开源数据集还好,我们项目上用的是自制的数据集,它的图片可能真的就是有些问题,比如你明明是用PIL加载图片,按理来说应该就是三通道无疑才对,但事实是就是存在通道为1的情况。

所以,为了让我们具备严谨的工程能力,为将来自己的项目打下基础,哪怕是开源数据集,我们也要进行测试。

一般来说,主要看到就是它的维度是否是正确的,还有它是否能够正确的显示。

在上面我们进行预处理操作,所以应该先进行反归一化:

def denormalize(tensor, mean, std):"""反归一化操作,将归一化后的张量转换回原始范围."""if not torch.is_tensor(tensor):raise TypeError("Input should be a torch tensor.")for t, m, s in zip(tensor, mean, std):t.mul_(s).add_(m)return tensor

而要看如何正常的显示,我们当然不希望单张的显示,这样似乎太慢了,所以这里我们按照批量大小进行显示:

def show_batch(images, labels):import matplotlibmatplotlib.use('TkAgg')images = denormalize(images, mean, std)img_grid = make_grid(images, nrow=4, padding=10, normalize=True)plt.imshow(img_grid.permute(1, 2, 0))plt.title(f"Labels: {labels}")plt.show()

测试代码:

if __name__=="__main__":import matplotlib.pyplot as pltfrom torchvision.utils import make_gridCIFAR100_TRAIN_MEAN = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)CIFAR100_TRAIN_STD = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)def denormalize(tensor, mean, std):"""反归一化操作,将归一化后的张量转换回原始范围."""if not torch.is_tensor(tensor):raise TypeError("Input should be a torch tensor.")for t, m, s in zip(tensor, mean, std):t.mul_(s).add_(m)return tensormean = CIFAR100_TRAIN_MEANstd = CIFAR100_TRAIN_STDtest_loader = get_val_loader(mean, std, batch_size=16, num_workers=2, shuffle=False)def show_batch(images, labels):import matplotlibmatplotlib.use('TkAgg')images = denormalize(images, mean, std)img_grid = make_grid(images, nrow=4, padding=10, normalize=True)plt.imshow(img_grid.permute(1, 2, 0))plt.title(f"Labels: {labels}")plt.show()for images, labels in test_loader:show_batch(images, labels)# print(images.size(), labels)

最后两行就是图片批量显示与维度检测的测试,这里最好是单独的测试,即两行中一行注释,一行正常运行。

四、自定义CIFAR-100的dataset类

dataset类的以下几个要点:

  • dataset类需要继承import torch.utils.data.dataset。
  • dataset的作用是将任意格式的数据,通过读取、预处理或数据增强后以tensor的形式输出。其中任意格式的数据指可能是以文件夹名作为类别的形式、或以txt文件存储图片地址的形式。而输出则指的是经过处理后的一个 batch的tensor格式数据和对应标签。
  • dataset类需要重写的主要有三个函数要完成:__init__函数、__len__函数和__getitem__函数。
  1. __init__(self, ...) 函数:初始化数据集。在这里,你通常会加载数据,设置转换(transformations)等。这个函数在数据集创建时调用。

  2. __len__(self)函数:返回数据集的大小,即数据集中样本的数量。这个函数在调用len(dataset) 时调用。

  3. __getitem__(self,index)函数:根据给定的索引返回数据集中的一个样本。这个函数允许你通过索引访问数据集中的单个样本,以便用于模型的训练和评估。

import os
import pickle
import numpy as npfrom torch.utils.data import Dataset,DataLoaderclass CIFAR100Dataset(Dataset):def __init__(self, path, transform=None, train=False):if train:sub_path = 'train'else:sub_path = 'test'with open(os.path.join(path, sub_path), 'rb') as cifar100:self.data = pickle.load(cifar100, encoding='bytes')self.transform = transformdef __len__(self):return len(self.data['fine_labels'.encode()])def __getitem__(self, index):label = self.data['fine_labels'.encode()][index]r = self.data['data'.encode()][index, :1024].reshape(32, 32)g = self.data['data'.encode()][index, 1024:2048].reshape(32, 32)b = self.data['data'.encode()][index, 2048:].reshape(32, 32)image = np.dstack((r, g, b))if self.transform:image = self.transform(image)return image, label

测试代码:

if __name__=="__main__":mean = CIFAR100_TRAIN_MEANstd = CIFAR100_TRAIN_STDtransform_train = transforms.Compose([transforms.ToPILImage(),transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize(mean, std)])train_dataset = CIFAR100Dataset(path='./data/cifar-100-python', transform=transform_train)train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)for images, labels in train_loader:show_batch(images, labels)# print(images.size(), labels)

附录

本章节源码

import torch
from torch.utils.data import Dataset,DataLoader
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torchvision.utils import make_grid
import os
import pickle
import numpy as npCIFAR100_TRAIN_MEAN = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)
CIFAR100_TRAIN_STD = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)__all__ = ["get_train_loader", "get_val_loader", "CIFAR100Dataset"]class CIFAR100Dataset(Dataset):def __init__(self, path, transform=None, train=False):if train:sub_path = 'train'else:sub_path = 'test'with open(os.path.join(path, sub_path), 'rb') as cifar100:self.data = pickle.load(cifar100, encoding='bytes')self.transform = transformdef __len__(self):return len(self.data['fine_labels'.encode()])def __getitem__(self, index):label = self.data['fine_labels'.encode()][index]r = self.data['data'.encode()][index, :1024].reshape(32, 32)g = self.data['data'.encode()][index, 1024:2048].reshape(32, 32)b = self.data['data'.encode()][index, 2048:].reshape(32, 32)image = np.dstack((r, g, b))if self.transform:image = self.transform(image)return image, labelclass CIFAR100Test(Dataset):def __init__(self, path, transform=None):with open(os.path.join(path, 'test'), 'rb') as cifar100:self.data = pickle.load(cifar100, encoding='bytes')self.transform = transformdef __len__(self):return len(self.data['data'.encode()])def __getitem__(self, index):label = self.data['fine_labels'.encode()][index]r = self.data['data'.encode()][index, :1024].reshape(32, 32)g = self.data['data'.encode()][index, 1024:2048].reshape(32, 32)b = self.data['data'.encode()][index, 2048:].reshape(32, 32)image = np.dstack((r, g, b))if self.transform:image = self.transform(image)return image, labeldef get_train_loader(mean, std, batch_size=16, num_workers=2, shuffle=True):transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize(mean, std)])cifar100_training = torchvision.datasets.CIFAR100(root='./data', train=True, download=True,transform=transform_train)cifar100_training_loader = DataLoader(cifar100_training, shuffle=shuffle, num_workers=num_workers, batch_size=batch_size)return cifar100_training_loaderdef get_val_loader(mean, std, batch_size=16, num_workers=2, shuffle=True):transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean, std)])cifar100_test = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test)cifar100_test_loader = DataLoader(cifar100_test, shuffle=shuffle, num_workers=num_workers, batch_size=batch_size)return cifar100_test_loaderdef show_batch(images, labels):import matplotlibmatplotlib.use('TkAgg')images = denormalize(images, CIFAR100_TRAIN_MEAN, CIFAR100_TRAIN_STD)img_grid = make_grid(images, nrow=4, padding=10, normalize=True)plt.imshow(img_grid.permute(1, 2, 0))plt.title(f"Labels: {labels}")plt.show()def denormalize(tensor, mean, std):"""反归一化操作,将归一化后的张量转换回原始范围."""if not torch.is_tensor(tensor):raise TypeError("Input should be a torch tensor.")for t, m, s in zip(tensor, mean, std):t.mul_(s).add_(m)return tensordef main1():test_loader = get_val_loader(CIFAR100_TRAIN_MEAN, CIFAR100_TRAIN_STD, batch_size=16, num_workers=2, shuffle=False)for images, labels in test_loader:show_batch(images, labels)# print(images.size(), labels)if __name__=="__main__":transform_train = transforms.Compose([transforms.ToPILImage(),transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize(CIFAR100_TRAIN_MEAN, CIFAR100_TRAIN_STD)])train_dataset = CIFAR100Dataset(path='./data/cifar-100-python', transform=transform_train)train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)for images, labels in train_loader:show_batch(images, labels)# print(images.size(), labels)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/168763.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VirtualBox网络地址转换(NAT),宿主机无法访问虚拟机的问题

问题:NAT模式下,默认只能从内访问外面,而不能从外部访问里面,所以只能单向ping通,虚拟机的ip只是内部ip。 PS:桥接则是与主机公用网卡,有独立的外部ip。 解决:NAT模式可以通过配置 …

区块链探秘:从基础到深度,全面解读区块链技术与应用

1.区块链基本概念 1.发展历史 比特币诞生: 2008年,化名为中本聪的人发表了论文《Bitcoin:A Peer-to-Peer Electronic Cash System》 2009年1月3日,中本聪开发运行了比特币客户端程序并进行了首次挖矿,获得了第一批…

Android---屏幕适配的处理技巧

在几年前,屏幕适配一直是困扰 Android 开发工程师的一大问题。但是随着近几年各种屏幕适配方案的诞生,以及谷歌各种适配控件的推出,屏幕适配也显得越来越容易。下面,我们就来总结一下关于屏幕适配的那些技巧。 ConstraintLayout …

[PHP]Kodexplorer可道云 v4.47

KodExplorer可道云,原名芒果云,是基于Web技术的私有云和在线文件管理系统,由上海岱牧网络有限公司开发,发布于2012年6月。致力于为用户提供安全可控、可靠易用、高扩展性的私有云解决方案。 用户只需通过简单环境搭建,…

OpenWRT配置SFTP远程文件传输,让数据分享更安全

文章目录 前言 1. openssh-sftp-server 安装2. 安装cpolar工具3.配置SFTP远程访问4.固定远程连接地址 前言 本次教程我们将在OpenWRT上安装SFTP服务,并结合cpolar内网穿透,创建安全隧道映射22端口,实现在公网环境下远程OpenWRT SFTP&#xf…

WebSocket是什么以及其与HTTP的区别

新钛云服已累计为您分享774篇技术干货 HTTP协议 HTTP是单向的,客户端发送请求,服务器发送响应。举个例子,当用户向服务器发送请求时,该请求采用HTTP或HTTPS的形式,在接收到请求后,服务器将响应发送给客户端…

Linux技能篇-yum源搭建(本地源和公网源)

文章目录 前言一、yum源是什么?二、使用镜像搭建本地yum源1.搭建临时仓库第一步:挂载系统ios镜像到虚拟机第二步:在操作系统中挂载镜像第三步:修改yum源配置文件 2.搭建本地仓库第一步:搭建临时yum源来安装httpd并做文…

Spark的执行计划

Spark 3.0 大版本发布,Spark SQL 的优化占比将近 50%。Spark SQL 取代 Spark Core,成为新一代的引擎内核,所有其他子框架如 Mllib、Streaming 和 Graph,都可以共享 Spark SQL 的性能优化,都能从 Spark 社区对于 Spark …

asp.net学生宿舍管理系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net 学生宿舍管理系统是一套完善的web设计管理系统,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为vs2010,数据库为sqlserver2008,使用c#语言 开发 asp.net学生宿舍管理系统1 应用技…

junit写搜索树测试

用法 assertTrue(range.contains("Two")); 2个参数,右边错就打印左边. AbstractSelfBalancingBinarySearchTree abt; AbstractBinarySearchTree.Node node; Before public void setUp() { abt new AbstractSelfBalancingBinarySearchTree() { Override protecte…

Goland报错:Cannot resolve symbol ‘XXX‘。一键解决该问题。

Goland报错:Cannot resolve symbol XXX。一键解决该问题。 问题是:Cannot resolve symbol XXX解决方法是: 问题是:Cannot resolve symbol ‘XXX’ 问题的背景: 我写了两个包,分别是main 、utils包。main包…

JAVA集合学习

一、结构 List和Set继承了Collection接口,Collection继承了Iterable Object类是所有类的根类,包括集合类,集合类中的元素通常是对象,继承了Object类中的一些基本方法,例如toString()、equals()、hashCode()。 Collect…