深度学习 大数据 股票预测系统 - python lstm 计算机竞赛

文章目录

  • 0 前言
  • 1 课题意义
    • 1.1 股票预测主流方法
  • 2 什么是LSTM
    • 2.1 循环神经网络
    • 2.1 LSTM诞生
  • 2 如何用LSTM做股票预测
    • 2.1 算法构建流程
    • 2.2 部分代码
  • 3 实现效果
    • 3.1 数据
    • 3.2 预测结果
        • 项目运行展示
        • 开发环境
        • 数据获取
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习 大数据 股票预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题意义

利用神经网络模型如果能够提高对股票价格的预测精度,更好地掌握股票价格发展趋势,这对于投资者来说可以及时制定相应的发展策略,更好地应对未来发生的不确定性事件,对于个人来说可以降低投资风险,减少财产损失,实现高效投资,具有一定的实践价值。

1.1 股票预测主流方法

股票市场复杂、非线性的特点使我们难以捉摸其变化规律,目前有很多预测股票走势的论文和算法。

定量分析从精确的数据资料中获得股票发展的价值规律,通过建立模型利用数学语言对股市的发展情况做出解释与预测。

目前常用的定量分析方法有:

  • 传统时间序列预测模型
  • 马尔可夫链预测
  • 灰色系统理论预测
  • 遗传算法
  • 机器学习预测等方法

2 什么是LSTM

LSTM是长短期记忆网络(LSTM,Long Short-Term Memory),想要理解什么是LSTM,首先要了解什么是循环神经网络。

2.1 循环神经网络

对于传统的BP神经网络如深度前馈网络、卷积神经网络来说,同层及跨层之间的神经元是独立的,但实际应用中对于一些有上下联系的序列来说,如果能够学习到它们之间的相互关系,使网络能够对不同时刻的输入序列产生一定的联系,像生物的大脑一样有“记忆功能”,这样的话我们的模型也就会有更低的训练出错频率及更好的泛化能力。

JordanMI提出序列理论,描述了一种体现“并行分布式处理”的网络动态系统,适用于语音生成中的协同发音问题,并进行了相关仿真实验,ElmanJL认为连接主义模型中对时间如何表示是至关重要的,1990年他提出使用循环连接为网络提供动态内存,从相对简单的异或问题到探寻单词的语义特征,网络均学习到了有趣的内部表示,网络还将任务需求和内存需求结合在一起,由此形成了简单循环网络的基础框架。

循环神经网络(RNN)之间的神经元是相互连接的,不仅在层与层之间的神经元建立连接,而且每一层之间的神经元也建立了连接,隐藏层神经元的输入由当前输入和上一时刻隐藏层神经元的输出共同决定,每一时刻的隐藏层神经元记住了上一时刻隐藏层神经元的输出,相当于对网络增添了“记忆”功能。我们都知道在输入序列中不可避免会出现重复或相似的某些序列信息,我们希望RNN能够保留这些记忆信息便于再次调用,且RNN结构中不同时刻参数是共享的,这一优点便于网络在不同位置依旧能将该重复信息识别出来,这样一来模型的泛化能力自然有所上升。

RNN结构如下:

在这里插入图片描述

2.1 LSTM诞生

RNN在解决长序列问题时未能有良好的建模效果,存在长期依赖的弊端,对此HochreiterS等人对神经单元做出了改进,引入自循环使梯度信息得以长时间持续流动,即模型可以拥有长期记忆信息,且自循环权重可以根据前后信息进行调整并不是固定的。作为RNN的一种特殊结构,它可以根据前后输入情况决定历史信息的去留,增进的门控机制可以动态改变累积的时间尺度进而控制神经单元的信息流,这样神经网络便能够自己根据情况决定清除或保留旧的信息,不至于状态信息过长造成网络崩溃,这便是长短期记忆(LSTM)网络。随着信息不断流入,该模型每个神经元内部的遗忘门、输入门、输出门三个门控机制会对每一时刻的信息做出判断并及时进行调整更新,LSTM模型现已广泛应用于无约束手写识别、语音识别、机器翻译等领域。

在这里插入图片描述

2 如何用LSTM做股票预测

2.1 算法构建流程

在这里插入图片描述

2.2 部分代码

import numpy as npimport matplotlib.pyplot as pltimport tensorflow as tfimport pandas as pdimport mathdef LSTMtest(data):n1 = len(data[0]) - 1 #因为最后一位为labeln2 = len(data)print(n1, n2)# 设置常量input_size = n1  # 输入神经元个数rnn_unit = 10    # LSTM单元(一层神经网络)中的中神经元的个数lstm_layers = 7  # LSTM单元个数output_size = 1  # 输出神经元个数(预测值)lr = 0.0006      # 学习率train_end_index = math.floor(n2*0.9)  # 向下取整print('train_end_index', train_end_index)# 前90%数据作为训练集,后10%作为测试集# 获取训练集# time_step 时间步,batch_size 每一批次训练多少个样例def get_train_data(batch_size=60, time_step=20, train_begin=0, train_end=train_end_index):batch_index = []data_train = data[train_begin:train_end]normalized_train_data = (data_train - np.mean(data_train, axis=0)) / np.std(data_train, axis=0)  # 标准化train_x, train_y = [], []  # 训练集for i in range(len(normalized_train_data) - time_step):if i % batch_size == 0:# 开始位置batch_index.append(i)# 一次取time_step行数据# x存储输入维度(不包括label) :X(最后一个不取)# 标准化(归一化)x = normalized_train_data[i:i + time_step, :n1]# y存储labely = normalized_train_data[i:i + time_step, n1, np.newaxis]# np.newaxis分别是在行或列上增加维度train_x.append(x.tolist())train_y.append(y.tolist())# 结束位置batch_index.append((len(normalized_train_data) - time_step))print('batch_index', batch_index)# print('train_x', train_x)# print('train_y', train_y)return batch_index, train_x, train_y# 获取测试集def get_test_data(time_step=20, test_begin=train_end_index+1):data_test = data[test_begin:]mean = np.mean(data_test, axis=0)std = np.std(data_test, axis=0)  # 矩阵标准差# 标准化(归一化)normalized_test_data = (data_test - np.mean(data_test, axis=0)) / np.std(data_test, axis=0)# " // "表示整数除法。有size个sampletest_size = (len(normalized_test_data) + time_step - 1) // time_stepprint('test_size$$$$$$$$$$$$$$', test_size)test_x, test_y = [], []for i in range(test_size - 1):x = normalized_test_data[i * time_step:(i + 1) * time_step, :n1]y = normalized_test_data[i * time_step:(i + 1) * time_step, n1]test_x.append(x.tolist())test_y.extend(y)test_x.append((normalized_test_data[(i + 1) * time_step:, :n1]).tolist())test_y.extend((normalized_test_data[(i + 1) * time_step:, n1]).tolist())return mean, std, test_x, test_y# ——————————————————定义神经网络变量——————————————————# 输入层、输出层权重、偏置、dropout参数# 随机产生 w,bweights = {'in': tf.Variable(tf.random_normal([input_size, rnn_unit])),'out': tf.Variable(tf.random_normal([rnn_unit, 1]))}biases = {'in': tf.Variable(tf.constant(0.1, shape=[rnn_unit, ])),'out': tf.Variable(tf.constant(0.1, shape=[1, ]))}keep_prob = tf.placeholder(tf.float32, name='keep_prob')  # dropout 防止过拟合# ——————————————————定义神经网络——————————————————def lstmCell():# basicLstm单元# tf.nn.rnn_cell.BasicLSTMCell(self, num_units, forget_bias=1.0,# tate_is_tuple=True, activation=None, reuse=None, name=None) # num_units:int类型,LSTM单元(一层神经网络)中的中神经元的个数,和前馈神经网络中隐含层神经元个数意思相同# forget_bias:float类型,偏置增加了忘记门。从CudnnLSTM训练的检查点(checkpoin)恢复时,必须手动设置为0.0。# state_is_tuple:如果为True,则接受和返回的状态是c_state和m_state的2-tuple;如果为False,则他们沿着列轴连接。后一种即将被弃用。# (LSTM会保留两个state,也就是主线的state(c_state),和分线的state(m_state),会包含在元组(tuple)里边# state_is_tuple=True就是判定生成的是否为一个元组)#   初始化的 c 和 a 都是zero_state 也就是都为list[]的zero,这是参数state_is_tuple的情况下#   初始state,全部为0,慢慢的累加记忆# activation:内部状态的激活函数。默认为tanh# reuse:布尔类型,描述是否在现有范围中重用变量。如果不为True,并且现有范围已经具有给定变量,则会引发错误。# name:String类型,层的名称。具有相同名称的层将共享权重,但为了避免错误,在这种情况下需要reuse=True.#basicLstm = tf.nn.rnn_cell.BasicLSTMCell(rnn_unit, forget_bias=1.0, state_is_tuple=True)# dropout 未使用drop = tf.nn.rnn_cell.DropoutWrapper(basicLstm, output_keep_prob=keep_prob)return basicLstmdef lstm(X):  # 参数:输入网络批次数目batch_size = tf.shape(X)[0]time_step = tf.shape(X)[1]w_in = weights['in']b_in = biases['in']# 忘记门(输入门)# 因为要进行矩阵乘法,所以reshape# 需要将tensor转成2维进行计算input = tf.reshape(X, [-1, input_size])input_rnn = tf.matmul(input, w_in) + b_in# 将tensor转成3维,计算后的结果作为忘记门的输入input_rnn = tf.reshape(input_rnn, [-1, time_step, rnn_unit])print('input_rnn', input_rnn)# 更新门# 构建多层的lstmcell = tf.nn.rnn_cell.MultiRNNCell([lstmCell() for i in range(lstm_layers)])init_state = cell.zero_state(batch_size, dtype=tf.float32)# 输出门w_out = weights['out']b_out = biases['out']# output_rnn是最后一层每个step的输出,final_states是每一层的最后那个step的输出output_rnn, final_states = tf.nn.dynamic_rnn(cell, input_rnn, initial_state=init_state, dtype=tf.float32)output = tf.reshape(output_rnn, [-1, rnn_unit])# 输出值,同时作为下一层输入门的输入pred = tf.matmul(output, w_out) + b_outreturn pred, final_states# ————————————————训练模型————————————————————def train_lstm(batch_size=60, time_step=20, train_begin=0, train_end=train_end_index):# 于是就有了tf.placeholder,# 我们每次可以将 一个minibatch传入到x = tf.placeholder(tf.float32,[None,32])上,# 下一次传入的x都替换掉上一次传入的x,# 这样就对于所有传入的minibatch x就只会产生一个op,# 不会产生其他多余的op,进而减少了graph的开销。X = tf.placeholder(tf.float32, shape=[None, time_step, input_size])Y = tf.placeholder(tf.float32, shape=[None, time_step, output_size])batch_index, train_x, train_y = get_train_data(batch_size, time_step, train_begin, train_end)# 用tf.variable_scope来定义重复利用,LSTM会经常用到with tf.variable_scope("sec_lstm"):pred, state_ = lstm(X) # pred输出值,state_是每一层的最后那个step的输出print('pred,state_', pred, state_)# 损失函数# [-1]——列表从后往前数第一列,即pred为预测值,Y为真实值(Label)#tf.reduce_mean 函数用于计算张量tensor沿着指定的数轴(tensor的某一维度)上的的平均值loss = tf.reduce_mean(tf.square(tf.reshape(pred, [-1]) - tf.reshape(Y, [-1])))# 误差loss反向传播——均方误差损失# 本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。# Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳.train_op = tf.train.AdamOptimizer(lr).minimize(loss)saver = tf.train.Saver(tf.global_variables(), max_to_keep=15)with tf.Session() as sess:# 初始化sess.run(tf.global_variables_initializer())theloss = []# 迭代次数for i in range(200):for step in range(len(batch_index) - 1):# sess.run(b, feed_dict = replace_dict)state_, loss_ = sess.run([train_op, loss],feed_dict={X: train_x[batch_index[step]:batch_index[step + 1]],Y: train_y[batch_index[step]:batch_index[step + 1]],keep_prob: 0.5})#  使用feed_dict完成矩阵乘法 处理多输入#  feed_dict的作用是给使用placeholder创建出来的tensor赋值#  [batch_index[step]: batch_index[step + 1]]这个区间的X与Y#  keep_prob的意思是:留下的神经元的概率,如果keep_prob为0的话, 就是让所有的神经元都失活。print("Number of iterations:", i, " loss:", loss_)theloss.append(loss_)print("model_save: ", saver.save(sess, 'model_save2\\modle.ckpt'))print("The train has finished")return thelosstheloss = train_lstm()# 相对误差=(测量值-计算值)/计算值×100%test_y = np.array(test_y) * std[n1] + mean[n1]test_predict = np.array(test_predict) * std[n1] + mean[n1]acc = np.average(np.abs(test_predict - test_y[:len(test_predict)]) / test_y[:len(test_predict)])print("预测的相对误差:", acc)print(theloss)plt.figure()plt.plot(list(range(len(theloss))), theloss, color='b', )plt.xlabel('times', fontsize=14)plt.ylabel('loss valuet', fontsize=14)plt.title('loss-----blue', fontsize=10)plt.show()# 以折线图表示预测结果plt.figure()plt.plot(list(range(len(test_predict))), test_predict, color='b', )plt.plot(list(range(len(test_y))), test_y, color='r')plt.xlabel('time value/day', fontsize=14)plt.ylabel('close value/point', fontsize=14)plt.title('predict-----blue,real-----red', fontsize=10)plt.show()prediction()

需要完整代码工程的同学,请联系学长获取

3 实现效果

3.1 数据

采集股票数据
在这里插入图片描述
任选几支股票作为研究对象。

3.2 预测结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

项目运行展示

废话不多说, 先展示项目运行结果, 后面才进行技术讲解

对某公司的股票进行分析和预测 :
在这里插入图片描述

开发环境

如果只运行web项目,则只需安装如下包:

  • python 3.6.x

  • django >= 2.1.4 (或者使用conda安装最新版)

  • pandas >= 0.23.4 (或者使用conda安装最新版)

  • numpy >= 1.15.2 (或者使用conda安装最新版)
    *apscheduler = 2.1.2 (请用pip install apscheduler==2.1.2 安装,conda装的版本不兼容)
    如果需要训练模型或者使用模型来预测(注:需要保证本机拥有 NVIDIA GPU以及显卡驱动),则还需要安装:

  • tensorflow-gpu >= 1.10.0 (可以使用conda安装最新版。如用conda安装,cudatoolkit和cudnn会被自动安装)

  • cudatoolkit >= 9.0 (根据自己本机的显卡型号决定,请去NVIDIA官网查看)

  • cudnn >= 7.1.4 (版本与cudatoolkit9.0对应的,其他版本请去NVIDIA官网查看对应的cudatoolkit版本)

  • keras >= 2.2.2 (可以使用conda安装最新版)

  • matplotlib >= 2.2.2 (可以使用conda安装最新版)

数据获取

训练模型的数据,即10个公司的历史股票数据。获取国内上市公司历史股票数据,
并以csv格式保存下来。csv格式方便用pandas读取,输入到LSTM神经网络模型, 用于训练模型以及预测股票数据。

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/171188.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高防CDN节点部署:流量攻击抵御的专业解决方案

随着网络攻击日益复杂和频繁,对于网站安全的需求也变得愈发迫切。高防CDN(Content Delivery Network)作为一种专业的网络安全解决方案,通过节点部署在全球范围内,能够有效抵御各种流量攻击,为网站提供可靠的…

适配器模式 rust和java的实现

文章目录 适配器模式介绍何时使用应用实例优点缺点使用场景 实现java实现rust 实现 rust代码仓库 适配器模式 适配器模式(Adapter Pattern)是作为两个不兼容的接口之间的桥梁。这种类型的设计模式属于结构型模式,它结合了两个独立接口的功能…

【工程实践】Docker使用记录

前言 服务上线经常需要将服务搬到指定的服务器上,经常需要用到docker,记录工作中使用过dcoker指令。 1.写Dockerfile 1.1 全新镜像 FROM nvidia/cuda:11.7.1-devel-ubuntu22.04ENV WORKDIR/data/Qwen-14B-Chat WORKDIR $WORKDIR ADD . $WORKDIR/RUN ap…

计算机视觉(CV)技术的优势和挑战

计算机视觉技术在很多领域具有很大的优势,例如: 自动化:计算机视觉技术可以帮助实现自动化生产和检测,省去了人力成本和时间成本。 准确性:计算机视觉技术可以提高生产和检测的准确性,降低了人工操作产生的误差。 速度:计算机视觉技术可以实现高速速度的生产和检测,提高…

Python实战 | 使用 Python 和 TensorFlow 构建卷积神经网络(CNN)进行人脸识别

专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https:/…

前端工具nvm实现node自由

node的自由之路 前言 大家使用vue框架开发的朋友可能会遇到首次运行公司项目环境的时候,会出现使用npm install命令安装依赖包的时候出现各种各样的问题,其中很重要的一个错误原因就是因为你的nodejs版本和当时搭建环境的版本不一致造成的。今天就来给…

file2Udp增量日志转出Udp简介

https://gitee.com/tianjingle/file2udp 很多时候服务产生的日志需要进行汇总,这种统一日志处理的方式有elb,而且很多日志组件也支持日志转出的能力。但是从广义上来说是定制化的,我们需要一个小工具实现tail -f的能力,将增量日志…

跨国企业如何选择安全靠谱的跨国传输文件软件?

随着全球化的不断发展,跨国企业之间的合作变得越来越频繁。而在这种合作中,如何安全、可靠地将文件传输给合作伙伴或客户,成为了跨国企业必须面对的问题。 然而,跨国文件传输并不是一件容易的事情,由于网络物理条件的…

万宾科技智能传感器EN100-C2有什么作用?

在日常生活中井盖是一种常见的城市设施,但井盖出现问题可能会对人们的生活造成什么影响呢?移位或老化的井盖可能会威胁人们的安全,同时也会影响城市生命线的正常运行。然而智能井盖的出现为解决这些问题提供了有效的应对方案。 WITBEE万宾智能…

Vatee万腾外汇数字化策略:Vatee科技决策力的未来引领

在外汇市场,Vatee万腾通过其前瞻性的外汇数字化策略,正引领着科技决策的未来。这一数字化策略的崭新愿景为投资者提供了更智慧、更高效的外汇投资体验,成为科技决策领域的翘楚。 Vatee万腾的外汇数字化策略是科技决策力未来引领的典范。通过运…

二十、泛型(6)

本章概要 问题 任何基本类型都不能作为类型参数实现参数化接口转型和警告重载基类劫持接口 自限定的类型 古怪的循环泛型自限定参数协变 问题 本节将阐述在使用 Java 泛型时会出现的各类问题。 任何基本类型都不能作为类型参数 正如本章早先提到的,Java 泛型的…

DBever连接PG库

一、简介 DBeaver是一种通用数据库管理工具,适用于需要以专业方式使用数据的每个人;适用于开发人员,数据库管理员,分析师和所有需要使用数据库的人员的 免费(DBeaver Community) 的多平台数据库工具,支持 Windows、Li…