8.指令格式,指令的寻址方式

目录

一. 指令格式

二. 扩展操作码

三. 指令寻址

(1)指令寻址

(2)数据寻址

1.直接寻址

2.间接寻址

3.寄存器寻址

4.寄存器间接寻址

5.隐含寻址

6.立即寻址

7.基址寻址

8.变址寻址

9.相对寻址

10.堆栈寻址


一. 指令格式

指令(又称机器指令):是指示计算机执行某种操作的命令,是计算机运行的最小功能单位。一台计算机的所有指令的集合构成该机的指令系统,也称为指令集。
注:一台计算机只能执行自己指令系统中的指令,不能执行其他系统的指令。Eg: x86架构、ARM架构。

指令格式:一条指令就是机器语言的一个语句,它是一组有意义的二进制代码。一条指令通常要包括操作码字段和地址码字段两部分。根据地址码数目不同,可以将指令分为零地址指令、一地址指令、二地址指令...

零地址指令OP:

  • 不需要操作数,如空操作、停机、关中断等指令
  • 堆栈计算机,两个操作数隐含存放在栈顶和次栈顶,计算结果压回栈顶。例如数据结构后缀表达式。

一地址指令OP A1:

  • 只需要单操作数,如加1、减1、取反、求补等。指令含义:OP(A1)→A1,完成一条指令需要3次访存:取指→读A1→写A1
  • 需要两个操作数,但其中一个操作数隐含在某个寄存器(如隐含在ACC)。指令含义: (ACC)OP(A1)→ACC,完成一条指令需要2次访存:取指→读A1

注:A1指某个主存地址(类比C语言指针),(A1)表示A1所指向的地址中的内容(类比指针所指位置的内容)

二地址指令OP A1(目的操作数) A2(源操作数):
常用于需要两个操作数的算术运算、逻辑运算相关指令。指令含义:(A1)OP(A2)→A1。完成一条指令需要访存4次,取指→读A1→读A2→写A1

三地址指令OP A1 A2 A3(结果):
常用于需要两个操作数的算术运算、逻辑运算相关指令。指令含义:(A1)OP(A2)→A3。完成一条指令需要访存4次,取指→读A1→读A2→写A3

四地址指令OP A1 A2 A3(结果) A4(下址):
A4=下一条将要执行指令的地址。指令含义:(A1)OP(A2)→A3。完成一条指令需要访存4次,取指→读A1→读A2→写A3。正常情况下:取指令之后PC+1,指向下一条指令。而四地址指令执行指令后,将PC的值修改位A4所指地址。

地址码的位数有什么影响?n位地址码的直接寻址范围=2^n.若指令总长度固定不变,则地址码数量越多,每一个地址码位数越少,寻址能力越差。

指令字长:一条指令的总长度(可能会变)
机器字长:CPU进行一次整数运算所能处理的二进制数据的位数(通常和ALU直接相关)

存储字长:一个存储单元中的二进制代码位数(通常和MDR位数相同)

半字长指令、单字长指令、双字长指令――指令长度是机器字长的多少倍
指令字长会影响取指令所需时间。如:机器字长=存储字长=16bit,则取一条双字长指令需要两次访存。

定长指令字结构:指令系统中所有指令的长度都相等。变长指令字结构:指令系统中各种指令的长度不等

定长操作码:指令系统中所有指令的操作码长度都相同,n位操作码→2^n条指令,控制器的译码电路设计简单,但灵活性较低
可变长操作码:指令系统中各指令的操作码长度可变,控制器的译码电路设计复杂,但灵活性较高

定长指令字结构(指令总长度不变)+可变长操作码→扩展操作码指令格式。

指令按操作类型分类:

二. 扩展操作码

定长操作码:在指令字的最高位部分分配固定的若干位(定长)表示操作码。一般n位操作码字段的指令系统最大能够表示2"条指令。

  • 优:定长操作码对于简化计算机硬件设计,提高指令译码和识别速度很有利;
  • 缺:指令数量增加时会占用更多固定位,留给表示操作数地址的位数受限。

扩展操作码(不定长操作码):全部指令的操作码字段的位数不固定,且分散地放在指令字的不同位置上。最常见的变长操作码方法是扩展操作码,使操作码的长度随地址码的减少而增加,不同地址数的指令可以具有不同长度的操作码,从而在满足需要的前提下,有效地缩短指令字长。

  • 优:在指令字长有限的前提下仍保持比较丰富的指令种类;
  • 缺:增加了指令译码和分析的难度,使控制器的设计复杂化。

在设计扩展操作码指令格式时,必须注意以下两点:
(1)不允许短码是长码的前缀,即短操作码不能与长操作码的前面部分的代码相同。
(2)各指令的操作码一定不能重复。
通常情况下,对使用频率较高的指令,分配较短的操作码;对使用频率较低的指令,分配较长的操作码,从而尽可能减少指令译码和分析的时间。

三. 指令寻址

(1)指令寻址

指令寻址:下一条欲执行指令的地址(始终由程序计数器PC给出)。

顺序寻址:(PC)+“1”→PC(1是指令字长,不是存储字长也不是1个字节),先有+1操作(也就是让PC指向下一条指令),然后在执行本条指令。
跳跃寻址:由转移指令指出。每次取指令之后,PC一定会自动+1,指向下一条应该执行的指令,JUMP会把PC的值强制修改。

(2)数据寻址

数据寻址:确定本条指令的地址码指明的真实地址。

例如:左:JMP 7,7就是真实地址;中:7解读为从程序初始地址100的偏移;右:3解读为执行103时PC的偏移量。

求出操作数的真实地址,称为有效地址(EA)。指令中的地址码记为A。为了区别寻址方式,可以在前加几位寻址方式位:

1.直接寻址

直接寻址:指令字中的形式地址A就是操作数的真实地址EA,即EA=A。

一条指令的执行:取指令访存1次,执行指令访存1次,暂不考虑存结果共访存2次
优点:简单,指令执行阶段仅访问一次主存,不需专门计算操作数的地址。
缺点:A的位数决定了该指令操作数的寻址范围。操作数的地址不易修改。

2.间接寻址

间接寻址:指令的地址字段给出的形式地址不是操作数的真正地址,而是操作数有效地址。所在的存储单元的地址,也就是操作数地址的地址,即EA=(A)。

一条指令的执行:取指令访存1次,执行指令访存2次,暂不考虑存结果共访存3次

优点:可扩大寻址范围(有效地址EA的位数大于形式地址A的位数)。便于编制程序(用间接寻址可以方便地完成子程序返回)。缺点:指令在执行阶段要多次访存(一次间址需两次访存,多次寻址需根据存储字的最高位确定几次访存)。

3.寄存器寻址

寄存器寻址:在指令字中直接给出操作数所在的寄存器编号,即EA=Ri,其操作数在由Ri所指的寄存器内。

一条指令的执行:取指令访存1次,执行指令访存0次(访问寄存器),暂不考虑存结果共访问1次

优点:指令在执行阶段不访问主存,只访问寄存器,指令字短且执行速度快,支持向量/矩阵运算。
缺点:寄存器价格昂贵,计算机中寄存器个数有限。

4.寄存器间接寻址

寄存器间接寻址:寄存器Ri中给出的不是一个操作数,而是操作数所在主存单元的地址,即EA=(Ri)。

一条指令的执行:取指令访存1次,执行指令访存1次,暂不考虑存结果共访存2次。

特点:与一般间接寻址相比速度更快,但指令的执行阶段需要访问主存(因为操作数在主存中)。

5.隐含寻址

隐含寻址:不是明显地给出操作数的地址,而是在指令中隐含着操作数的地址。

优点:有利于缩短指令字长。缺点:需增加存储操作数或隐含地址的硬件。

6.立即寻址

立即寻址:形式地址A就是操作数本身(不是操作数在主存的地址,这一点和直接寻址区分开),又称为立即数,一般采用补码形式。#表示立即寻址特征。

一条指令的执行:取指令访存1次,执行指令访存0次,暂不考虑存结果共访存1次

优点:指令执行阶段不访问主存,指令执行时间最短。
缺点:A的位数限制了立即数的范围。

7.基址寻址

基址寻址:以程序的起始存放地址作为“起点”。

左图:将CPU中基址寄存器(BR)的内容加上指令格式中的形式地址A,形成操作数的有效地址,即EA=(BR)+A。

右图:部分计算机没有BR,所以需要借用通用寄存器,在指令中指明要将哪个通用寄存器作为基址寄存器使用。

优点:便于程序“浮动”(修改BR的值即可),方便实现多道程序并发运行。可扩大寻址范围(基址寄存器的位数大于形式地址A的位数)。用户不必考虑自己的程序存于主存的哪一空间区域,故有利于多道程序设计,以及可用于编制浮动程序(整个程序在内存里边的浮动)。

注:基址寄存器是面向操作系统的,其内容由操作系统或管理程序确定。在程序执行过程中,基址寄存器的内容不变(作为基地址),形式地址可变(作为偏移量)。当采用通用寄存器作为基址寄存器时,可由用户决定哪个寄存器作为基址寄存器,但其内容仍由操作系统确定。

8.变址寻址

变址寻址:程序员自己决定从哪里作为“起点”。有效地址EA等于指令字中的形式地址A与变址寄存器IX的内容相加之和,即EA= (IX)+A,其中IX可为变址寄存器(专用),也可用通用寄存器作为变址寄存器。

注:变址寄存器是面向用户的,在程序执行过程中,变址寄存器的内容可由用户改变(IX作为偏移量),形式地址A不变(作为基地址)。而基址寻址中,BR保持不变作为基地址,A作为偏移量。

例如:执行求数组和的操作,如果采用直接寻址,每一次加法对应一条指令,编程就很不灵活:

而如果采用变址寻址方式:

在数组处理过程中,可设定形式地址A为数组的首地址,不断改变变址寄存器lX的内容,便可很容易形成数组中任一数据的地址,特别适合编制循环程序。

复合寻址:假如上面的代码存在编号100的起始地址:

9.相对寻址

相对寻址:以程序计数器PC所指地址作为“起点”。把程序计数器PC的内容加上指令格式中的形式地址A而形成操作数的有效地址,即EA=(PC)+A,其中A是相对于PC所指地址的位移量,可正可负,补码表示。

优点:操作数的地址不是固定的,它随着Pc值的变化而变化,并且与指令地址之间总是相差一个固定值,因此便于程序浮动(一段代码在程序内部的浮动)。相对寻址广泛应用于转移指令。

补充:关于汇编语言的比较和跳转:

10.堆栈寻址

堆栈寻址:操作数存放在堆栈中,隐含使用堆栈指针(SP)作为操作数地址。

堆栈是存储器(或专用寄存器组)中一块特定的按“后进先出(LIFO)”原则管理的存储区,该存储区中被读/写单元的地址是用一个特定的寄存器给出的,该寄存器称为堆栈指针(SP) 。

上面称为硬堆栈,硬堆栈直接使用寄存器,如果在主存中操作,我们称为软堆栈。堆栈可用于函数调用时保存当前函数的相关信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/175057.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智慧城市井盖选择,智能井盖传感器特点介绍

在不断发展的智慧城市技术领域,创新的过程一直是永无止境的。 顺应科学技术的发展潮流,一项惠民的举措正在悄然改变人们的生活。智能井盖传感器看似是不起眼的设备,但是它们就在我们脚下,正在悄无声息的完善城市基础设施和城市生命…

StackExchange.Redis 高并发下timeout超时问题如何解决?

查看服务端程序负载还行,根据打印的连接看到一知半懂,按GitHub的issue提示,这2个Busy的数量不能比Min的大,即要提示Min的数值; 的各个字段: Timeout performing EXEC (1000ms): 表示在执行一个事务(MULTI..…

预览PDF并显示当前页数

这里写目录标题 步骤实例实例效果图 步骤 1.安装依赖 npm install --save vue-pdf2.在需要的页面&#xff0c;引入插件 import pdf from vue-pdf3.使用 单页pdf可以直接使用 <pdf :src"获取到的pdf地址"></pdf>多页pdf通过循环实现 html标签部分 &l…

日历应用程序 BusyCal mac中文版软件特点

BusyCal mac是一款日历应用程序&#xff0c;它可以帮助用户轻松地管理日程安排、事件提醒、会议安排等。BusyCal 支持 macOS 和 iOS 平台&#xff0c;并且可以与 iCloud、Google 日历、Exchange 等多种日历服务进行同步。 BusyCal mac软件特点 强大的日历功能&#xff1a;Busy…

threejs(13)-着色器设置点材质

着色器材质内置变量 three.js着色器的内置变量&#xff0c;分别是 gl_PointSize&#xff1a;在点渲染模式中&#xff0c;控制方形点区域渲染像素大小&#xff08;注意这里是像素大小&#xff0c;而不是three.js单位&#xff0c;因此在移动相机是&#xff0c;所看到该点在屏幕…

Java基于itextPDF实现pdf动态导出

Java基于itextPDF实现pdf动态导出 1、制作PDF导出模板2 、集成itextpdf3 、编写实体4 、编写主要代码5、编写controller并测试补充&#xff1a;踩坑记录 现在的业务越来越复杂了&#xff0c;有些业务场景已经不能满足与EXCEL导出和WORD导出了&#xff0c;例如准考证打印&#x…

kafka+ubuntu20.04+docker配置

记录一次配置过程 安装docker 参加下面链接的第一部分 Ubuntu20.04使用docker安装kafka服务-CSDN博客 安装zookeeper docker run -d --name zookeeper -p 2181:2181 -v /etc/localtime:/etc/localtime wurstmeister/zookeeper安装kafka服务 docker run -d --name kafka …

DNS域名解析服务

1.概述 1.1.产生原因 IP 地址:是互联网上计算机唯一的逻辑地址&#xff0c;通过IP 地址实现不同计算机之间的相互通信&#xff0c;每台联网计算机都需要通过I 地址来互相联系和分别&#xff0c;但由于P 地址是由一串容易混淆的数字串构成&#xff0c;人们很难记忆所有计算机的…

[论文分享] Never Mind the Malware, Here’s the Stegomalware

Never Mind the Malware, Here’s the Stegomalware [IEEE Security & Privacy 2022] Luca Caviglione | National Research Council of Italy Wojciech Mazurczyk | Warsaw University of Technology and FernUniversitt in Hagen 近年来&#xff0c;隐写技术已逐渐被观…

【Nginx】CentOS 安装Nignx

CentOS上安装Nginx&#xff1a; 1. 打开终端&#xff1a;使用SSH或者直接在服务器上打开终端。 2. 更新系统&#xff1a;运行以下命令以确保您的系统软件包列表是最新的&#xff1a; sudo yum update3. 安装Nginx&#xff1a;运行以下命令以安装Nginx&#xff1a; sudo yum…

​如何解决SSD NAND Path冲突导致的性能问题?

1.引言 最近看到一篇关于SSD的NAND并发瓶颈相关的论文&#xff0c;思路非常好&#xff0c;这里分享给大家。本篇论文的解读&#xff0c;也是小编上周末在高铁上完成的。存储随笔的论文解读&#xff0c;不是直接翻译&#xff0c;是小编先研读一遍后&#xff0c;再结合自己的理解…

WP光电信息学院2023年网络安全季度挑战赛-测试赛

签个到就跑WP Misc MISC-没爱了&#xff0c;下一个 下载附件压缩包解压之后&#xff0c;获得一个流量包文件 使用wireShark打开流量包&#xff0c;Ctrl F 搜索flag{即可获得flag flag{Good_b0y_W3ll_Done}MISC-送你一朵小花花 下载附件压缩包解压之后&#xff0c;获得一…