前言
当关系型数据库数据量过大时,通常会采用分库分表降低数据库查表压力。分库分表有多种,有分一个库多张分表额,有分多个库多张表的。一般分库分表使用ShardingSphere分表,建分片键等。但是分库分表之后,主键ID如何处理呢?相同业务表不同分表的主键ID是不可以相同的,其实这是分库分表之后你必然要面对的一个问题,就是 主键id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全局唯一的 id 来支持。所以这都是你实际生产环境中必须考虑的问题。
以下是我整理的几种主键ID的处理方式:
一、自动生成主键ID
这种方式一般会将主键设置为bitint类型,自增的。但是会存在一个问题,多张分表保证主键不冲突,因为在业务上来说,多张分表的数据组成某个业务,因此主键是不允许冲突的。
当采用自动生成主键ID的方案时,可以设置固定的几张分表,每个分表的起点不一样,每次新增的步长一样,这样就可以保证每张分表的主键不冲突。
可以通过设置数据库 sequence 或者表的自增字段步长来进行水平伸缩。现在有 10 个服务节点,每个服务节点使用一个 sequence 功能来产生 ID,每个 sequence 的起始 ID 不同,并且依次递增,步长都是 10。
举例,如某张表分表有10张,可以设置每张表的起始主键ID从1到10,每张分表主键ID递增步长为10。
表名 | 起始主键ID | 步长 |
---|---|---|
table_1 | 1 | 10 |
table_2 | 2 | 10 |
table_3 | 3 | 10 |
table_4 | 4 | 10 |
table_5 | 5 | 10 |
table_6 | 6 | 10 |
table_7 | 7 | 10 |
table_8 | 8 | 10 |
table_9 | 9 | 10 |
table_10 | 10 | 10 |
根据上面分表主键递增规律,每张表的行数如下递增
按照主键递增格式有弊端,即新增表时,不好处理主键逻辑。这种主键ID递增的方式适用于分表比较固定的情况。
二、UUID做主键
好处就是本地生成,不要基于数据库来了;不好之处就是,UUID 太长了、占用空间大,作为主键性能太差了;更重要的是,UUID 不具有有序性,会导致 B+ 树索引在写的时候有过多的随机写操作(连续的 ID 可以产生部分顺序写),还有,由于在写的时候不能产生有顺序的 append 操作,而需要进行 insert 操作,将会读取整个 B+ 树节点到内存,在插入这条记录后会将整个节点写回磁盘,这种操作在记录占用空间比较大的情况下,性能下降明显。
适合的场景:如果你是要随机生成个什么文件名、编号之类的,你可以用 UUID,但是作为主键是不能用 UUID 的。
UUID.randomUUID().toString().replace("-", "") -> sfsdf23423rr234sfdaf
三、获取系统当前时间
这个就是获取当前时间即可,但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。基本就不用考虑了。
适合的场景:一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个 id,如果业务上你觉得可以接受,那么也是可以的。你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号。
四、雪花算法snowflake
(1)一位占位符:默认为0。最高位代表正负,1代表负数,0代表正数,默认为正数。
(2)41位时间戳:毫秒级的时间,可以存69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年
(3)5位工作中心id:十进制范围在0-31;5位数据中心id:十进制范围在0-31。两个组合在一起最多可以容纳1024个节点。
(4)序列号:占用12bit,最多可以累加到4095。自增值支持同一毫秒内同一个节点可以生成4096个ID,这个值在同一毫秒同一节点上从0开始不断累加。(最大可以支持单节点差不多四百万的并发量)
snowflake 算法是 twitter 开源的分布式 id 生成算法,采用 Scala 语言实现,是把一个 64 位的 long 型的 id,1 个 bit 是不用的,用其中的 41 bits 作为毫秒数,用 10 bits 作为工作机器 id,12 bits 作为序列号。
•1 bit:不用,为啥呢?因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
•41 bits:表示的是时间戳,单位是毫秒。41 bits 可以表示的数字多达 2^41 - 1
,也就是可以标识 2^41 - 1
个毫秒值,换算成年就是表示 69 年的时间。
•10 bits:记录工作机器 id,代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。但是 10 bits 里 5 个 bits 代表机房 id,5 个 bits 代表机器 id。意思就是最多代表 2^5
个机房(32 个机房),每个机房里可以代表 2^5
个机器(32 台机器)。
•12 bits:这个是用来记录同一个毫秒内产生的不同 id,12 bits 可以代表的最大正整数是 2^12 - 1 = 4096
,也就是说可以用这个 12 bits 代表的数字来区分同一个毫秒内的 4096 个不同的 id。
0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000
public class IdWorker {private long workerId;private long datacenterId;private long sequence;public IdWorker(long workerId, long datacenterId, long sequence) {// sanity check for workerId// 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);this.workerId = workerId;this.datacenterId = datacenterId;this.sequence = sequence;}private long twepoch = 1288834974657L;private long workerIdBits = 5L;private long datacenterIdBits = 5L;// 这个是二进制运算,就是 5 bit最多只能有31个数字,也就是说机器id最多只能是32以内private long maxWorkerId = -1L ^ (-1L << workerIdBits);// 这个是一个意思,就是 5 bit最多只能有31个数字,机房id最多只能是32以内private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);private long sequenceBits = 12L;private long workerIdShift = sequenceBits;private long datacenterIdShift = sequenceBits + workerIdBits;private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;private long sequenceMask = -1L ^ (-1L << sequenceBits);private long lastTimestamp = -1L;public long getWorkerId() {return workerId;}public long getDatacenterId() {return datacenterId;}public long getTimestamp() {return System.currentTimeMillis();}public synchronized long nextId() {// 这儿就是获取当前时间戳,单位是毫秒long timestamp = timeGen();if (timestamp < lastTimestamp) {System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}if (lastTimestamp == timestamp) {// 这个意思是说一个毫秒内最多只能有4096个数字// 无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围sequence = (sequence + 1) & sequenceMask;if (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);}} else {sequence = 0;}// 这儿记录一下最近一次生成id的时间戳,单位是毫秒lastTimestamp = timestamp;// 这儿就是将时间戳左移,放到 41 bit那儿;// 将机房 id左移放到 5 bit那儿;// 将机器id左移放到5 bit那儿;将序号放最后12 bit;// 最后拼接起来成一个 64 bit的二进制数字,转换成 10 进制就是个 long 型return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)| (workerId << workerIdShift) | sequence;}private long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}private long timeGen() {return System.currentTimeMillis();}// ---------------测试---------------public static void main(String[] args) {IdWorker worker = new IdWorker(1, 1, 1);for (int i = 0; i < 30; i++) {System.out.println(worker.nextId());}}}
怎么说呢,大概这个意思吧,就是说 41 bit 是当前毫秒单位的一个时间戳,就这意思;然后 5 bit 是你传递进来的一个机房 id(但是最大只能是 32 以内),另外 5 bit 是你传递进来的机器 id(但是最大只能是 32 以内),剩下的那个 12 bit 序列号,就是如果跟你上次生成 id 的时间还在一个毫秒内,那么会把顺序给你累加,最多在 4096 个序号以内。
所以你自己利用这个工具类,自己搞一个服务,然后对每个机房的每个机器都初始化这么一个东西,刚开始这个机房的这个机器的序号就是 0。然后每次接收到一个请求,说这个机房的这个机器要生成一个 id,你就找到对应的 Worker 生成。
利用这个 snowflake 算法,你可以开发自己公司的服务,甚至对于机房 id 和机器 id,反正给你预留了 5 bit + 5 bit,你换成别的有业务含义的东西也可以的。
这个 snowflake 算法相对来说还是比较靠谱的,所以你要真是搞分布式 id 生成,如果是高并发啥的,那么用这个应该性能比较好,一般每秒几万并发的场景,也足够你用了。
总结:
除了上面的几种id生成算法,当然还有其他的主键id生成算法未整理进来,具体使用哪种需要根据业务的情况来使用。