基于 PostgreSQL 构建 AI 电商产品图片相似度搜索方案

在这篇文章中,将介绍如何基于向量数据库,构建一个电商产品图片目录的向量相似度查询解决方案。我们将通过 Amazon SageMaker、pgvector 向量数据库扩展插件、小型语言模型助力 AI 图片搜索能力,从而在产品目录中查找到最符合条件的产品,提高查询的准确性、效率性和便利性。该方案尤其适合垂直行业使用,可覆盖电商、游戏、短视频,甚至法律、医疗、制造业、人力资源等场景。

亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点 这里让它成为你的技术宝库!

构建背景介绍

各行各业都在探索 AIGC 创新方法,希望通过利用生成式 AI 的巨大潜力,来增强用户体验,探索垂直行业的无限可能。

在游戏美术、电商产品设计、建筑/家装设计等行业,AIGC 正在彻底改变图片方向创作过程。通过大数据分析用户喜好和行为数据,人工智能算法可以生成独特的游戏场景和角色、服装款式和设计、家装内饰和风格,将个性化和成本效益提升到一个新的水平。且通过图像识别,对最终生成的图片进行审查,实现对结果的鉴黄鉴暴功能。

视频网站、短视频平台同样可以从 AI 能力中获益,尤其是在视频相似度搜索和推荐方面,AI 算法可以分析用户行为,并推荐与他们的兴趣点密切相关的视频内容,从而提升用户的整体观感体验,从而增加用户粘性。此外,AI 驱动的图像和视频托管服务可以提供图像去重、图像相似度搜索和文本与图像相似度搜索等功能,从而实现搜索精度和搜索体验的整体改善。

生物信息行业也是 AI 应用探索的另一领域。在分子和 DNA 序列分类相似度搜索的应用,使得 AI 在药物发现和药物研究中发挥了关键作用,大大提升了药物研发的速度。无论是识别潜在的候选药物还是 DNA 序列分析,AI 都被证明是一种宝贵的工具。

在这篇文章中,您将学习如何构建一个类似的产品目录相似度搜索解决方案。该方案主要集成 Amazon SageMaker 和亚马逊关系数据库服务(Amazon RDS)PostgreSQL,而 PostgreSQL 通过启用 pgvector 扩展插件实现了数据的向量存储能力。

Pgvector 作为 PostgreSQL 的开源扩展插件,它提供了 ML 生成式向量的存储和搜索功能。还同时支持精确识别和近似最近邻算法识别(KNN)。它的设计初衷就是用于与 PostgreSQL 的其他功能无缝集成,包括了索引和查询等。您甚至可以使用 pgvector 存储来自 Amazon Bedrock 的 ML 生成式向量分片(目前 Bedrock 还处于限量预览版阶段)。

综述,无论您属于哪个行业,无论是以上提到的电商、游戏、视频服务、生命科学,还是法律、医疗、制造业、人力资源等行业,这篇文章都将为您将来进行相似度搜索提供有价值的见解。

Vector embeddings 概述

Embeddings(向量化表示/向量嵌入)是指将文本、图像、视频或音频等对象转换成高维向量空间中的数字表示的过程。该技术是通过使用机器学习算法实现,理解数据的含义和上下文的语义关系、句法关系。您可以将生成的 Embeddings 用于各种应用程序,例如信息检索、图像分类、自然语言处理等等。

Vector embeddings 之所以变得越来越受欢迎,是因为它们能够以易于计算和扩展的方式捕捉对象之间的语义含义和相似之处。下图直观地表示了 Word Embedding(词语向量化表示)的特征形态。

图片


图 1 Word Embedding:语义相似的单词在 Embedding 空间中靠得很近

生成 Embeddings 后,我们可以在向量空间内执行相似度搜索。基于 Embedding 的相似度搜索能在许多行业的应用中受益,如电子商务、推荐系统和欺诈检测等。例如,系统可以识别产品或交易之间的数学相似之处,以创建相关的产品推荐,或识别潜在的欺诈活动。

使用 pgvector 实现高效的 Embedding 相似度搜索

通过使用 pgvector 扩展插件,PostgreSQL 可以有效地执行 Vector Embeddings 的相似度搜索,为企业提供快速查询的解决方案。

要为本文场景的产品目录生成 Embedding 向量化表示数据,您可以使用 Amazon SageMaker 等机器学习服务,为您轻松训练和部署机器学习模型,包括生成文本数据的 Embedding 模型。

在本文部署执行过程中,为了快速地呈现实验效果,我们使用 Hugging Face DLCs(深度学习容器) 和 Amazon SageMaker Python SDK 来创建一个实时推理节点,运行 All MiniLM-L6-v2(句子转换器模型),生成文档的 embedding 数据。使用 pgvector 扩展插件将 Vector Embeddings 存储在 RDS for PostgreSQL 数据库中。然后,我们使用 pgvector 的相似度搜索功能,在产品目录中查找最符合客户搜索查询意图的商品,并返回图片结果。

在上述过程中,pgvector 的索引功能将进一步增强搜索优化。通过对向量数据进行索引,可以加快搜索过程,并最大限度地减少识别最近的邻域对象所需的时间。我们深入研究了 pgvector 插件如何与 PostgreSQL 协同,为向量数据相似度搜索提供了一种简化而有效的解决方案。

pgvector 扩展插件的安装与使用验证

pgvector 扩展插件的安装

首先,我们创建并连接到 RDS for PostgreSQL V15.2 或以上版本的数据库。然后可以启用创建 pgvector 插件,并支持您可以在数据库中启动 vector embbeding 的存储并根据需要进行搜索(Amazon RDS for PostgreSQL 数据库自 15.2 版本起支持 pgvector 扩展插件,用户可以通过 SQL 规范语句调用 pgvector 插件)。

CREATE EXTENSION vector;

pgvector 扩展插件引入了一种名为 vector 的新数据类型。vector 数据类型在 SQL 语句中的使用如下:

SELECT typname FROM pg_type WHERE typname = 'vector';

您应该看到以下输出:

typname 
---------
vector 
(1 row)
Pgvector 扩展插件的使用验证

本文实验中,我们使用 sentence-transformers/all-MiniLM-L6-v2 模型来生成 vector embeddings 数据。它将句子和段落映射到 384 维的密集向量空间,因此我们在解决方案中使用它来表示向量大小。

代码示范:创建一个用于存储三维向量的测试表,插入一些样本数据,使用欧几里德距离(也称为 L2 距离)进行查询,然后删除测试表:

CREATE TABLE test_embeddings(product_id bigint, embeddings vector(3) );INSERT INTO test_embeddings VALUES
(1, '[1, 2, 3]'), (2, '[2, 3, 4]'), (3, '[7, 6, 8]'), (4, '[8, 6, 9]');SELECT product_id, embeddings, embeddings <-> '[3,1,2]' AS distance 
FROM test_embeddings 
ORDER BY embeddings <-> '[3,1,2]';DROP TABLE test_embeddings;

SELECT 语句应返回以下输出:

product_id | embeddings | distance
------------+------------+-------------------1 | [1,2,3] | 2.4494897427831782 | [2,3,4] |                 33 | [7,6,8] | 8.7749643873921234 | [8,6,9] |   9.9498743710662
(4 rows)

有关更多详细信息,请参阅 GitHub repo。

电商产品图片相似度搜索方案

基于上述如何使用 pgvector 构建向量相似度搜索的演示,接下来开始使用 pgvector 为电商的产品目录,构建搜索解决方案。我们将构建一个搜索系统,让买家通过描述来查找类似的商品。

接下来将逐步演示如何执行产品相似度查询。我们将在 SageMaker 实例上使用 Hugging Face 预训练的模型,为产品描述生成 vector embeddings 数据;使用 Amazon RDS for PostgreSQL 并集成 pgvector 扩展插件,对我们的 vector embeddings 数据进行存储和相似度搜索。

方案步骤
  1. 在 Amazon SageMaker notebook 实例中,创建 Jupyter notebook,由 SageMaker  负责管理创建实例和相关资源。
  1. 部署预先训练的 Hugging Face sentence transformer model (句子转换器模型)到 SageMaker,以便下一步利用实时推理和数据转换,生成物品描述的  embeddings 数据。
  1. 使用 Amazon SageMaker 实时推理为产品目录描述生成 Embeddings 数据。
  1. 使用 Amazon RDS for PostgreSQL 来存储原始产品描述和对应的文本 Embeddings。
  1. 使用 Amazon SageMaker 实时推理将需要查询的文本描述也生成 Embedding 数据。
  1. 使用 Amazon RDS for PostgreSQL 的 pgvector 插件,执行相似度搜索。
方案架构图

图片

前置条件

若要完成本 Demo,您需要拥有一个亚马逊云科技账户,并具有相应的 Amazon IAM 权限,以启动提供的 Amazon CloudFormation 模板。此解决方案将产生一定成本,请参阅亚马逊云科技定价页面了解更多信息。

解决方案部署

我们将使用 CloudFormation Stack 来部署这个解决方案。该堆栈会自动在您的账户内创建所有必要的资源,包括以下资源:

  • 网络组件,包括 VPC 、子网、路由,安全组等资源。
  • 一个 SageMaker Notebook 实例,用于在 Jupyter Notebook 中运行 Python 代码。
  • 与 Notebook 实例关联的 IAM 角色。
  • 一个 RDS for PostgreSQL 实例,用于存储和查询商品目录的 Embedding 数据。

解决方案部署开始,请完成以下步骤:

  1. 使用您的 IAM 用户名和密码登录亚马逊云科技管理控制台。
  1. 选择 “启动堆栈 Launch Stack ”,并在新的浏览器标签页中打开。

图片

  1. 选择默认值,点击“Next”,在下一页选中复选框以确认 IAM 资源的创建,选择“Create Stack”。
  1. 等待堆栈创建完成,状态 CREATE_COMPLETE。您可以在 “Event” 选项卡上检查堆栈创建过程中的状态。
  1. 在“Outputs”选项卡上,打开 NotebookInstanceUrl。此链接将打开 Jupyter Notebook,来完成剩下的部分。

图片

  1. 打开笔记本 rdspg-vector.ipynb,然后按顺序逐个在所有单元格中运行代码。

图片

在以下部分中,我们将检查 Jupyter Notebook 中几个重要单元格的部分代码,以演示解决方案。

演示数据获取

我们使用 Zalando Research FEIDEGGER 数据,该数据由 8,732 张高分辨率的时尚图片和五张德语文字注释组成,每张都是由单独的用户生成的。我们已经使用 Amazon Translate 将每条着装描述从德语翻译成英语。代码如下所示:

import urllib.request
import os
import json
import boto3
from multiprocessing import cpu_count
from tqdm.contrib.concurrent import process_map
filename = 'metadata.json'def download_metadata(url):if not os.path.exists(filename):urllib.request.urlretrieve(url, filename)## The German text has been translated into English and the resulting translation has been stored in this repository for convenience.
download_metadata('https://raw.githubusercontent.com/aws-samples/rds-postgresql-pgvector/master/data/FEIDEGGER_release_1.2.json')with open(filename) as json_file:results = json.load(json_file)results[0]
SageMaker 模型托管与向量化表示数据生成

在本节中,我们将预先训练的 Hugging Face all-MiniLM-L6-v2 句子转换器模型托管到 SageMaker 中,并为我们的产品目录生成 384 维向量化表示数据(Embedding)。步骤如下:

  1. 定义 SageMaker 的执行角色,工作 S3 桶和建立 SageMaker。
import sagemaker
import boto3
sess = sagemaker.Session()
# sagemaker session bucket -> used for uploading data, models and logs
# sagemaker will automatically create this bucket if it not exists
sagemaker_session_bucket=None
if sagemaker_session_bucket is None and sess is not None:# set to default bucket if a bucket name is not givensagemaker_session_bucket = sess.default_bucket()try:role = sagemaker.get_execution_role()
except ValueError:iam = boto3.client('iam')role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']sess = sagemaker.Session(default_bucket=sagemaker_session_bucket)print(f"sagemaker role arn: {role}")
print(f"sagemaker bucket: {sess.default_bucket()}")
print(f"sagemaker session region: {sess.boto_region_name}")
  1. 指定模型配置参数,部署模型推理节点。
from sagemaker.huggingface.model import HuggingFaceModel# Hub Model configuration. <https://huggingface.co/models>
hub = {'HF_MODEL_ID': 'sentence-transformers/all-MiniLM-L6-v2','HF_TASK': 'feature-extraction'
}# Deploy Hugging Face Model 
predictor = HuggingFaceModel(env=hub, # configuration for loading model from Hubrole=role, # iam role with permissions to create an Endpointtransformers_version='4.26',pytorch_version='1.13',py_version='py39',).deploy(initial_instance_count=1,instance_type="ml.m5.xlarge",endpoint_name="rdspg-vector")
print(f"Hugging Face Model has been deployed successfully to SageMaker")
  1. 调用 SageMaker 实时推理节点生成 Embeddings,结果将显示给定输入文本的 384 维向量的维度。
def cls_pooling(model_output):# first element of model_output contains all token embeddingsreturn [sublist[0] for sublist in model_output][0] data = {"inputs": ' '.join(results[0].get('descriptions'))
} res = cls_pooling( predictor.predict(data=data) )
print(len(res))
  1. 使用 SageMaker 推理,为我们的产品目录描述生成 384 维的向量化表示数据(embedding)。
def generate_embeddings(data):r = {}r['url'] = data['url']r['descriptions'] = data['descriptions']r['split'] = data['split']inp = {'inputs' : ' '.join( data['descriptions'] ) }vector = cls_pooling( predictor.predict(inp) )r['descriptions_embeddings'] = vectorreturn rworkers = 1 * cpu_count() chunksize = 32 # generate embeddings   
data = process_map(generate_embeddings, results, max_workers=workers, chunksize=chunksize)
PostgreSQL 与 pgvetor 插件的存储与检索
  1. 连接到 RDS for PostgreSQL,使用向量数据类型创建产品表并提取数据。然后,为相似度搜索创建索引,以查找最近的 L2 距离邻域向量对象。
import psycopg2 
from pgvector.psycopg2 import register_vector 
import boto3 
import json client = boto3.client('secretsmanager')response = client.get_secret_value( SecretId='rdspg-vector-secret')
database_secrets = json.loads(response['SecretString'])dbhost = database_secrets['host'] 
dbport = database_secrets['port'] 
dbuser = database_secrets['username'] 
dbpass = database_secrets['password']dbconn = psycopg2.connect(host=dbhost, user=dbuser, password=dbpass, port=dbport, connect_timeout=10) 
dbconn.set_session(autocommit=True)cur = dbconn.cursor()
cur.execute("CREATE EXTENSION IF NOT EXISTS vector;")
register_vector(dbconn)
cur.execute("DROP TABLE IF EXISTS products;")
cur.execute("""CREATE TABLE IF NOT EXISTS products(id bigserial primary key,description text,url text,split int,descriptions_embeddings vector(384)
);""")for x in data:cur.execute("""INSERT INTO products (description, url, split, descriptions_embeddings)VALUES (%s, %s, %s, %s);""",(' '.join(x.get('descriptions', [])), x.get('url'), x.get('split'), x.get('descriptions_embeddings') ))cur.execute("""CREATE INDEX ON productsUSING ivfflat (descriptions_embeddings vector_l2_ops) WITH (lists = 100);""")
cur.execute("VACUUM ANALYZE products;")
cur.close()
dbconn.close()
print ("Vector embeddings has been successfully loaded into PostgreSQL")
  1. 使用 pgvector 插件,在 RDS for PostgreSQL 执行产品图片的最相似图片搜索。
import numpy as np 
from skimage import io 
import matplotlib.pyplot as plt 
import requests data = {"inputs": "green sleeveless summer wear"} res1 = cls_pooling(predictor.predict(data=data)) 
client = boto3.client('secretsmanager')
response = client.get_secret_value( SecretId='rdspg-vector-secret' )
database_secrets = json.loads(response['SecretString'])
dbhost = database_secrets['host']
dbport = database_secrets['port']
dbuser = database_secrets['username']
dbpass = database_secrets['password']
dbconn = psycopg2.connect(host=dbhost, user=dbuser, password=dbpass, port=dbport, connect_timeout=10)
dbconn.set_session(autocommit=True)cur = dbconn.cursor()cur.execute("""SELECT id, url, description, descriptions_embeddingsFROM productsORDER BY descriptions_embeddings <-> %s limit 3;""",(np.array(res1),))r = cur.fetchall()
urls = []
plt.rcParams["figure.figsize"] = [7.50, 3.50]
plt.rcParams["figure.autolayout"] = Truefor x in r:url = x[1].split('?')[0]urldata = requests.get(url).contentprint("Product Item Id: " + str(x[0]))a = io.imread(url)plt.imshow(a)plt.axis('off')plt.show()cur.close()
dbconn.close()

大家可以修改查询用的描述文本,或 Limit 参数,尝试不同图片结果和输出图片的数量。本文的查询文本:“green sleeveless summer wear”,Limit 参数 3,返回产品 ID(Product Item Id)分别为:2328、5117、479。

图片


现在,向量相似度搜索功能已为您返回最接近的匹配结果。

方案资源清理
  1. 在 Jupyter notebook 单元中运行以下代码以删除模型和节点。
predictor.delete_model() 
predictor.delete_endpoint()
  1. 在 CloudFormation stack 中,清理本 Demo 中创建的 Stack,清理剩余的资源。

结论

将 Amazon SageMaker,Amazon RDS for PostgreSQL 与 pgvector 开源扩展集成,配合小型语言模型(MiniLM),可以提供基于 Vector Embedding 的高精度 AI 图片智能数据检索。可以应用于电商产品目录的相似度搜索,优化查询体验。通过使用机器学习模型和 Vector Embedding,企业可以提高相似度搜索、个性化推荐和欺诈检测的准确性和速度,最终提高用户满意度和更个性化的体验。

Pgvector 的使用为大型多模态数据集(图片、文本)的查询提供了可扩展性,并且能够无缝集成 PostgreSQL 的存储功能。Amazon SageMaker 和 pgvector 的组合可在动态和数据驱动世界中取得更好的应用效果。

随着工作负载的持续发展,PostgreSQL 在向量数据库方向的可扩展性,使开发人员能够在垂直行业构建新的数据类型和索引机制。随着 AI/ML 创新的不断涌现,您未来可以在查询终端集成 LLM(大语言模型),进一步形成用户友好的智能查询 ChatBot,构建新的企业级智能化应用程序。

附录

1、有关本文中使用的代码示例的更多信息,请参阅 GitHub repo。

2、本文是在亚马逊云科技原有的英文 Blog 的基础上,进行更新和调整。原文作者为  Krishna Sarabu,原文链接:https://aws.amazon.com/cn/blogs/database/building-ai-powered-search-in-postgresql-using-amazon-sagemaker-and-pgvector/?trk=cndc-detail。

参考资料

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2?trk=cndc-detail

https://docs.aws.amazon.com/zh_cn/AmazonRDS/latest/UserGuide/USER_ConnectToPostgreSQLInstance.html?trk=cndc-detail

https://aws.amazon.com/cn/about-aws/whats-new/2023/05/amazon-rds-postgresql-pgvector-ml-model-integration/?trk=cndc-detail

文章来源:
https://dev.amazoncloud.cn/column/article/65489514de82943ae0ac4297?sc_medium=regulartraffic&sc_campaign=crossplatform&sc_channel=CSDN 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/176462.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

跟着基金买,别墅靠大海?买基金重仓股票,会破产吗?| 附最新选股结果

2020年A股经历了一波结构性牛市。 抱团核心资产的公募基金历史性大赚2万亿&#xff0c;一跃成为全市场顶流。不仅常年霸榜热搜&#xff0c;甚至连游戏直播的弹幕都在讨论基金。 很多年轻人也纷纷跑步入场&#xff0c;毕竟支付宝买基金贼方便。 可惜好景不长&#xff0c;大盘急…

【带头学C++】----- 六、结构体 ---- 6.6 结构体的指针成员

6.5结构体指针变量 结构体的指针变量:本质是变量只是该变量保存的是结构体变量的地址 6.5.1结构体指针变量的定义 通过指针&#xff0c;可以访问到我们结构体变量的值 可以通过 -> 符号 访问到结构体变量 6.5.2 结构体数组元素的指针变量 指针变量保存结构体数组元素…

Redis键(Keys)

前言 在 Redis 中&#xff0c;键&#xff08;Keys&#xff09;是非常重要的概念&#xff0c;它们代表了存储在数据库中的数据的标识符。对键的有效管理和操作是使用 Redis 数据库的关键一环&#xff0c;它直接影响到数据的存取效率、系统的稳定性和开发的便利性。 本文将深入…

数字化转型时代,商业智能BI到底是什么?

据国际数据公司&#xff08;IDC&#xff09;预测&#xff0c;2025年时中国产生的数据量预计将达48.6ZB&#xff0c;在全球中的比例为27.8%。商业智能BI这一专为企业提供服务的数据类解决方案&#xff0c;仅2021年上半年在中国商业智能BI市场规模就达到了3.2亿美元&#xff0c;商…

docker部署Prometheus+Cadvisor+Grafana实现服务器监控

一&#xff1a;Prometheus 1&#xff1a;介绍&#xff1a; Prometheus是一个在SoundCloud上构建的开源系统监视和警报工具包 2&#xff1a;特点 多维度数据模型-由指标键值对标识的时间序列数据组成&#xff1b;PromQL&#xff0c;一种灵活的查询语言&#xff1b;不依赖分布…

在ant构建脚本中调用maven的命令

有时候想用maven管理依赖&#xff0c;用ant构建。 在ant的build.xml文件中可以使用exec这个task来调用系统命令&#xff0c;也就可以调用maven的命令。 例如&#xff0c;执行maven的命令mvn dependency:copy-dependencies&#xff0c;可以将项目的依赖提取出来&#xff0c;放…

msys2 + MSVC(VS2019)编译ffmpeg6.0源码

以前使用的v1.2版&#xff0c;很多功能和使用方法发生了变化&#xff0c;需要重新编译新的ffmpeg版。 编译环境: windows 10 , VS2019, MSYS2 1. msys2 下载安装 MSYS2 , https://www.msys2.org/ 2. msys2 环境配置打开 msys2 2.1 安装相关软件 然后输入以下命令安装&…

Scala---数据基础

一、数据类型 二、变量和常量的声明 定义变量或者常量的时候&#xff0c;也可以写上返回的类型&#xff0c;一般省略&#xff0c;如&#xff1a;val a:Int 10常量不可再赋值 1./** 2. * 定义变量和常量 3. * 变量 :用 var 定义 &#xff0c;可修改 4. * 常量 :用 val 定…

移动端APP版本治理

1 背景 在许多公司&#xff0c;APP版本都是不受重视的&#xff0c;产品忙着借鉴&#xff0c;开发埋头编码&#xff0c;测试想着不粘锅。 只有在用户反馈app不能用的时候&#xff0c;你回复客服说&#xff0c;让用户升级最新版本&#xff0c;是不是很真实。 而且业界也很少有…

AI创作系统ChatGPT源码+AI绘画系统+支持OpenAI DALL-E3文生图,可直接对话文生图

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。新增支…

学Diffusion前需要储备的一些知识点

自学Diffusion是非常困难的&#xff0c;尤其是到了VAE和VI这里基本找不到比较好的中文资料&#xff0c;甚至是涉及到一些重参数化&#xff0c;高斯混合之类的问题摸不着来龙去脉。在本文中&#xff0c;基本不会涉及公式&#xff0c;只有intuition和理解&#xff0c;如果要看公式…

正点原子嵌入式linux驱动开发——Linux ADC驱动

在之前的笔记中&#xff0c;学习了如何给ICM20608编写IIO驱动&#xff0c;ICM20608本质就是ADC&#xff0c;因此纯粹的ADC驱动也是IIO驱动框架的。本章就学习一下如何使用STM32MP1内部的ADC&#xff0c;并且在学习巩固一下IIO驱动。 ADC简介 ADC ADC&#xff0c;Analog to D…