代码随想录算法训练营第五十三天丨 动态规划part14

1143.最长公共子序列

思路

本题和动态规划:718. 最长重复子数组 (opens new window)区别在于这里不要求是连续的了,但要有相对顺序,即:"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

继续动规五部曲分析如下:

  • 确定dp数组(dp table)以及下标的含义

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?

这样定义是为了后面代码实现方便,如果非要定义为长度为[0, i]的字符串text1也可以,卡哥在 动态规划:718. 最长重复子数组 (opens new window)中的「拓展」里 详细讲解了区别所在,其实就是简化了dp数组第一行和第一列的初始化逻辑。

  • 确定递推公式

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

代码如下:

if (text1.charAt(i-1) == text2.charAt(j-1)){dp[i][j] = dp[i-1][j-1]+1;
}else{dp[i][j] =Math.max(dp[i][j-1],dp[i-1][j]);
}
  • dp数组如何初始化

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

代码:

int[][] dp = new int[text1.length()+1][text2.length()+1];
  • 确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:

1143.最长公共子序列

那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。

  • 举例推导dp数组

以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:

1143.最长公共子序列1

最后红框dp[text1.size()][text2.size()]为最终结果

以上分析完毕,C++代码如下:

class Solution {public int longestCommonSubsequence(String text1, String text2) {int[][] dp = new int[text1.length()+1][text2.length()+1];//Arrays.fill(dp,1);int result = 0;for (int i = 1; i <= text1.length(); i++) {for (int j = 1; j <= text2.length(); j++) {if (text1.charAt(i-1) == text2.charAt(j-1)){dp[i][j] = dp[i-1][j-1]+1;}else{dp[i][j] =Math.max(dp[i][j-1],dp[i-1][j]);}result = Math.max(result,dp[i][j]);}}return result;}
}
  • 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
  • 空间复杂度: O(n * m)

1035.不相交的线

思路

相信不少录友看到这道题目都没啥思路,来逐步分析一下。

绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且直线不能相交!

直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。

拿示例一A = [1,4,2], B = [1,2,4]为例,相交情况如图:

其实也就是说A和B的最长公共子序列是[1,4],长度为2。 这个公共子序列指的是相对顺序不变(即数字4在字符串A中数字1的后面,那么数字4也应该在字符串B数字1的后面)

这么分析完之后,大家可以发现:本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!

那么本题就和我们刚刚讲过的这道题目动态规划:1143.最长公共子序列 (opens new window)就是一样一样的了。

一样到什么程度呢? 把字符串名字改一下,其他代码都不用改,直接copy过来就行了。

其实本题就是求最长公共子序列的长度,介于我们刚刚讲过动态规划:1143.最长公共子序列 (opens new window),所以本题我就不再做动规五部曲分析了。

如果大家有点遗忘了最长公共子序列,就再看一下这篇:动态规划:1143.最长公共子序列(opens new window)

本题代码如下:

class Solution {public int maxUncrossedLines(int[] nums1, int[] nums2) {int[][] dp = new int[nums1.length+1][nums2.length+1];/**本题其实核心含义就是找相同的子序列*/for (int i = 1; i <= nums1.length; i++) {for (int j = 1; j <= nums2.length; j++) {if (nums1[i-1] == nums2[j-1]){dp[i][j] = dp[i-1][j-1]+1;}else {dp[i][j] = Math.max(dp[i-1][j],dp[i][j-1]);}}}return dp[nums1.length][nums2.length];}
}
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

53. 最大子序和

思路

这道题之前我们在讲解贪心专题的时候用贪心算法解决过一次,贪心算法:最大子序和 (opens new window)。

这次我们用动态规划的思路再来分析一次。

动规五部曲如下:

  • 确定dp数组(dp table)以及下标的含义

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

  • 确定递推公式

dp[i]只有两个方向可以推出来:

  • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
  • nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

  • dp数组如何初始化

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

dp[0]应该是多少呢?

根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。

  • 确定遍历顺序

递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。

  • 举例推导dp数组

以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下: 

53.最大子序和(动态规划)

注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]。

在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]。

那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。

所以在递推公式的时候,可以直接选出最大的dp[i]。

以上动规五部曲分析完毕,完整代码如下:

class Solution {public int maxSubArray(int[] nums) {int[] dp = new int[nums.length];dp[0] = nums[0];int result = dp[0];for (int i = 1; i < nums.length; i++) {dp[i] = Math.max(dp[i-1]+nums[i],nums[i]);// 状态转移公式result = Math.max(result,dp[i]);// result 保存dp[i]的最大值}return result;}
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/177636.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

arf_1解题

arf_1解题 镜像环境 version: 3.2services:web:image: registry.cn-hangzhou.aliyuncs.com/n1book/web-file-read-1:latestports:- 80:80新建yml文件将代码保存在当前位置 使用docker-compost up -d 拉取镜像 解题 访问该镜像映射端口为1520 可以看到页面只有一个holle但…

光纤接入网是怎么操作

大家还记得我们通过运营商提供的网线甚至是电话线上网的经历吧&#xff0c;那时上网使用xDSL&#xff08;数字用户线路&#xff0c;Digital Subscriber Line&#xff09;网络技术&#xff0c;xDSL技术是数字用户线路的所有类型的总称&#xff0c;包括RADSL、SDSL、HDSL、ADSL、…

【python】Django——连接mysql数据库

笔记为自我总结整理的学习笔记&#xff0c;若有错误欢迎指出哟~ 【Django专栏】 Django——django简介、django安装、创建项目、快速上手 Django——templates模板、静态文件、django模板语法、请求和响应 Django——连接mysql数据库 Django——连接mysql数据库 连接MySQL数据库…

2024CFA一级二级三级双机构网课资源

复习流程 我自己的复习流程是这样的&#xff0c;按照这个踏实去复习的话100&#xff05;可以过&#xff1a; 第一轮学习&#xff08;30-40天左右&#xff09;&#xff1a;把所有reading学习一遍&#xff0c;每天上午看新的reading&#xff0c;下午复习前一天上午学习的reading…

Linux arm64异常简介和系统调用过程

文章目录 一、异常简介1.1 Exception levels1.2 异常类型 二、系统调用简介2.1 SVC指令2.2 VBAR2.3 系统调用保存现场2.4 系统调用返回 三、Linux 内核分析参考资料 一、异常简介 在ARM64体系架构中&#xff0c;异常是处理器在执行指令时可能遇到的不寻常情况或事件。这些异常…

CountDownLatch使用

常用于多线程场景&#xff0c;待多线程都结束后方可继续主线程逻辑处理 CodeConstant 常量类 import java.util.HashMap; import java.util.Map;public class CodeConstant {public static final Map<String, Map<String, String>> CODE new HashMap<>();…

Android 启动优化案例-WebView非预期初始化排查

作者&#xff1a;邹阿涛涛涛涛涛涛 去年年底做启动优化时&#xff0c;有个比较好玩的 case 给大家分享下&#xff0c;希望大家能从我的分享里 get 到我在做一些问题排查修复时是怎么看上去又low又土又高效的。 1. 现象 在我们使用 Perfetto 进行app 启动过程性能观测时&#…

2023年【电工(高级)】考试报名及电工(高级)考试试卷

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2023年【电工&#xff08;高级&#xff09;】考试报名及电工&#xff08;高级&#xff09;考试试卷&#xff0c;包含电工&#xff08;高级&#xff09;考试报名答案和解析及电工&#xff08;高级&#xff09;考试试卷…

isomorphic-fetch库代码示例

isomorphic-fetch库的爬虫程序。 typescript // 引入isomorphic-fetch库 import fetch from isomorphic-fetch; // 设置 const proxy ; // 定义视频URL const url ; // 使用fetch获取视频数据 fetch(url, { method: GET, headers: { Accept: application/json, …

2023 PostgreSQL 数据库生态大会:解读拓数派大数据计算系统及其云存储底座

11月3日-5日&#xff0c;由中国开源软件推进联盟 PostgreSQL 分会主办的中国 PostgreSQL 数据库生态大会在北京中科院软件所隆重举行。大会以”极速进化融合新生”为主题&#xff0c;从线下会场和线上直播两种方式展开&#xff0c;邀请了数十位院士、教授、高管和社群专家&…

YOLOv8优化策略:全新的聚焦式线性注意力模块Focused Linear Attention | ICCV2023

🚀🚀🚀本文改进:深入分析了现有线性注意力方法的缺陷,并提出了一个全新的聚焦的线性注意力模块(Focused Linear Attention),同时具有高效性和很强的模型表达能力。 🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK 学姐带你学习YOLOv8,从入门到创新,轻轻…

Cesium 展示——坐标间的转换

文章目录 需求1. 点击位置会后获取的地球坐标2. 笛卡尔坐标(Cartesian3)3. 地理坐标系分析转换关系如下需求 坐标间的转换 1. 点击位置会后获取的地球坐标 Cesium点击位置会后获取的地球坐标。 2. 笛卡尔坐标(Cartesian3) 笛卡尔坐标系中,表示一个在 x 轴上、y轴上、…