【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (六)

在这里插入图片描述

🤵‍♂️ 个人主页: @AI_magician
📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。
👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

在这里插入图片描述

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (一)
作者: 计算机魔术师
版本: 1.0 ( 2023.8.27 )

摘要: 本系列旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!本系列会一直更新,核心概念系列会一直更新!欢迎大家订阅

该文章收录专栏
[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]

@toc

置信区域概念

置信区域(Confidence Interval)是统计学中的一个概念,用于估计总体参数的取值范围。它是对样本统计量的点估计结果进行区间估计的一种方法。

在统计推断中,我们通常只能通过抽样得到一部分数据,然后利用这部分数据对总体参数进行估计。然而,由于抽样误差等因素的存在,样本估计值往往不会完全等于总体参数的真实值。因此,为了提供关于总体参数的估计范围,我们使用置信区域来表示参数可能的取值范围

置信区域由估计值的下限和上限组成,表示我们对总体参数的估计具有一定的置信水平(confidence level)。常见的置信水平包括95%、90%等。例如,一个95%的置信区域表示,在大量重复抽样的情况下,有95%的置信区间会包含总体参数的真实值。

置信区域的计算通常依赖于抽样分布的性质和统计理论。常见的计算方法包括基于正态分布的方法、基于t分布的方法等。计算得到的置信区域可以帮助我们对估计结果的可靠性进行评估,并提供了关于总体参数的不确定性信息。

需要注意的是,置信区域并不直接提供关于总体参数真实值的准确区间,而是提供了一个统计上的估计范围。置信区域的宽度与置信水平有关,较宽的置信区域表示对估计结果的不确定性较大,较窄的置信区域表示对估计结果的不确定性较小。

独立同分布概念

独立同分布(independent and identically distributed,简称i.i.d.)是概率统计学中的一个重要概念。

独立(independent)指的是随机变量之间的关系,即一个随机变量的取值不受其他随机变量的取值影响。换句话说,给定一个随机变量的取值,不能提供有关其他随机变量取值的任何信息。例如,抛一枚硬币两次,第一次出现正面和第二次出现正面这两个事件是独立的,因为第一次出现正面的结果不会影响第二次出现正面的概率。

同分布(identically distributed)指的是多个随机变量具有相同的概率分布。换句话说,多个随机变量的取值遵循相同的概率规律。例如,从同一批产品中随机选取多个产品的重量,这些随机变量的取值遵循相同的概率分布。

因此,独立同分布(i.i.d.)的含义是指多个随机变量之间相互独立且具有相同的概率分布。在统计学和机器学习中,独立同分布假设常常被用来简化问题和建立模型。它是许多概率模型和统计推断方法的基础假设之一,使得问题可以更容易地建模和求解。

P-value假设检验

在统计学中,p-value中的"P"代表"probability",即概率。p-value表示观察到的样本数据或更极端情况出现的概率。

在假设检验中,p-value是用于衡量观察到的样本数据对于原假设的支持程度的指标。它表示在原假设为真的情况下,观察到的样本数据或更极端情况出现的概率。

假设检验的一般步骤如下:

  1. 建立原假设(H0)和备择假设(H1)。
  2. 选择适当的统计量,根据样本数据计算统计量的观察值。
  3. 基于原假设,确定统计量在原假设下的分布。
  4. 计算p-value,即在原假设为真的情况下,观察到的统计量值或更极端情况出现的概率。
  5. 根据p-value与事先设定的显著性水平进行比较。
    • 如果p-value小于显著性水平(通常为0.05),则拒绝原假设,认为观察到的数据提供了足够的证据支持备择假设。
    • 如果p-value大于等于显著性水平,则无法拒绝原假设,认为观察到的数据不足以提供足够的证据支持备择假设。

p-value的计算方法与具体的假设检验方法和统计量有关。对于一些常见的假设检验方法,例如t检验和F检验,p-value可以通过查表或使用概率分布函数来计算。对于更复杂的假设检验方法,可能需要使用模拟方法(如蒙特卡洛模拟)或基于抽样分布的方法来估计p-value。

需要注意的是,p-value并不提供关于备择假设的真实性或效应大小的信息。它仅仅是一种衡量观察到数据与原假设的一致性的指标。因此,在解释p-value时,应该谨慎考虑其他因素,如实际背景知识、样本大小和效应大小等。

显著性水平(0.05)

显著性水平通常被设定为0.05(或5%)的原因是出于统计学上的传统和惯例。在假设检验中,显著性水平表示在原假设为真的情况下,我们拒绝原假设的错误概率。换句话说,它是我们犯第一类错误(拒绝一个实际上为真的假设)的概率。

将显著性水平设置为0.05有以下几个原因:

  1. 常用的标准:0.05的显著性水平是在许多学科和领域中被广泛接受的标准,包括经济学、社会科学、医学研究等。这种一致性有助于结果的可比性和解释的一致性。

  2. 平衡类型I和类型II错误:在假设检验中,存在两种类型的错误,即类型I错误(拒绝一个实际上为真的假设)和类型II错误(接受一个实际上为假的假设)。将显著性水平设置为0.05可以在一定程度上平衡这两种错误的风险。

  3. 统计学的权衡:选择显著性水平时需要进行统计学权衡。较低的显著性水平(例如0.01)可以降低犯类型I错误的概率,但可能增加类型II错误的概率。相反,较高的显著性水平(例如0.10)可以增加类型I错误的概率,但可能降低类型II错误的概率。0.05的显著性水平在权衡这两种错误之间提供了一种较为平衡的选择。

需要注意的是,显著性水平的选择并不是绝对的,而是依赖于具体的研究领域、问题的重要性以及研究者自身的偏好。在某些情况下,可能会选择更为保守或更为宽松的显著性水平。

将显著性水平设置为0.05是出于统计学的传统和平衡类型I和类型II错误的考虑。然而,根据具体的研究需求和背景,研究者可以根据自己的判断和需要选择不同的显著性水平。
在这里插入图片描述

						  🤞到这里,如果还有什么疑问🤞🎩欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑的!🎩🥳如果对你有帮助,你的赞是对博主最大的支持!!🥳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/179872.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于JavaWeb的网上体育商城的设计与实现

项目描述 临近学期结束,还是毕业设计,你还在做java程序网络编程,期末作业,老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。你想解决的问题,今天给大家介绍…

【保姆级教程】Linux安装JDK8

本文以centos7为例,一步一步进行jdk1.8的安装。 1. 下载安装 官网下载链接: https://www.oracle.com/cn/java/technologies/downloads/#java8 上传jdk的压缩包到服务器的/usr/local目录下 在当前目录解压jdk压缩包,如果是其它版本&#xf…

格式工厂——万能格式转换器

很多时候,大家从网络上下载的文件不一定是自己想要的类型,比如flv等视频文件,而强行改文件后缀名只会造成文件格式错误,无法打开;而很多文件的格式并不能轻易转换,且很多渠道都需要收费。今天介绍的这款For…

MySQL中全文索引和普通索引的区别

MySQL中的全文索引(Full-Text Index)和普通索引(比如B-Tree索引)是为了提高查询效率而设计的,但它们适用于不同的场景和查询类型。 普通索引(如B-Tree索引) 适用场景:普通索引适用于…

自动备份pgsql数据库

bat文件中的内容: PATH D:\Program Files\PostgreSQL\13\bin;D:\Program Files\7-Zip set PGPASSWORD**** pg_dump -h 8.134.151.187 -p 5466 -U sky -d mip_db --schema-only -f D:\DB\backup\%TODAY%-schema-mip_db_ali.sql pg_dump -h 8.134.151.187 -p 5466…

工业除尘器笔记

工业除尘器用于对工业生产产生的有害气体和粉尘进行吸附。相关标准的制定最早可以追溯到1960年代以前。注意,本文的附录包含一起完整的工业除尘器事故的分析和定责过程。相关事故分析定责文档源头摘自上海市政府网站。 在产品设计行业和关联下游行业,在…

关闭RecyclerView惯性滚动,以及多个RecyclerView在嵌套滚动中的注意事项

前言: 当前RecyclerView 下拉到顶部 或者 上拉到底部时,虽然滚动列表停止了,但惯性任务并没有结束,一些特殊需求可能受到影响,需要手动停止。 1. RecyclerView源码 调用 rv.stopScroll() 停止; 2. Recycl…

python+django+mysql个人博客项目部署(VMware部署)

目录 一、Vmware新建win7虚拟机 二、组件/软件安装 2.1 安装python3 2.2 更新pip 2.3 安装pycharm 2.4 安装django 2.5 win安装mysql 三、配置数据库 3.1 安装sqlite客户端 3.2 db.sqlite3导出为myblog.sql 3.3 Heidisql连接本地sql 四、部署项目 4.1 安装模块 4.2 尝试运行 …

基于Qt Linux开发板USER-KEY按键实现

介绍如何在 Qt 应用上使用嵌入式 GET6818 Linux 开发板 上的按键。 工具:Qt Creator 5.14.2 平台:windows ## 资源简介 在GET6818 开发板,开发板板载资源上有两个用户按键。如下图原理图(下图开发板的按键原理图)。 ## 应用实例 想要监测这个 KEY0,首先出厂内核已经…

通过IP地理位置阻止网络攻击

随着网络技术的不断发展,网络安全问题日益引起人们的关注。网络攻击者往往隐藏在虚拟的网络世界中,难以追踪其真实身份和位置。然而,近年来技术专家们借助IP地址定位的方法来阻止网络被攻击,这种方法引起了广泛关注。本文将探讨通…

武汉凯迪正大—锂电池均衡维护仪

产品概况 KDZD885C 电池容量平衡测试系统,主要用于锂电池箱充放电测试及均衡维护,解决锂电池包单芯电压不均衡的痛点,用于快速解决锂电池电压不一致的难题,适用于各锂电池模组电压等级,集单芯放电,充电,均…

node插件MongoDB(五)—— 库mongoose 的模块化(五)

文章目录 一、使用mongoose 模块化的原因二、准备工作2. 启动mongo.exe 和mongod.exe 两个程序连接数据库 三、基本模块的拆分1、基本逻辑2、代码3、代码图示说明 四、在index.js 中进一步的拆分1.拆分原因2.新建model文件夹存储文档的结构对象3.代码4.代码实际演示和注意点 一…