数据结构与算法之美学习笔记:20 | 散列表(下):为什么散列表和链表经常会一起使用?

目录

  • 前言
  • LRU 缓存淘汰算法
  • Redis 有序集合
  • Java LinkedHashMap
  • 解答开篇 & 内容小结

前言

在这里插入图片描述
本节课程思维导图:
在这里插入图片描述
今天,我们就来看看,在这几个问题中,散列表和链表都是如何组合起来使用的,以及为什么散列表和链表会经常放到一块使用。

LRU 缓存淘汰算法

借助散列表,我们可以把 LRU 缓存淘汰算法的时间复杂度降低为 O(1)。现在,我们就来看看它是如何做到的。
首先,我们来回顾一下当时我们是如何通过链表实现 LRU 缓存淘汰算法的。
我们需要维护一个按照访问时间从大到小有序排列的链表结构。因为缓存大小有限,当缓存空间不够,需要淘汰一个数据的时候,我们就直接将链表头部的结点删除。当要缓存某个数据的时候,先在链表中查找这个数据。如果没有找到,则直接将数据放到链表的尾部;如果找到了,我们就把它移动到链表的尾部。因为查找数据需要遍历链表,所以单纯用链表实现的 LRU 缓存淘汰算法的时间复杂很高,是 O(n)。
总结:一个缓存(cache)系统主要包含下面这几个操作:

  1. 往缓存中添加一个数据;
  2. 从缓存中删除一个数据;
  3. 在缓存中查找一个数据。

这三个操作都要涉及“查找”操作,如果单纯地采用链表的话,时间复杂度只能是 O(n)。如果我们将散列表和链表两种数据结构组合使用,可以将这三个操作的时间复杂度都降低到 O(1)。具体的结构就是下面这个样子:
在这里插入图片描述
我们使用双向链表存储数据,链表中的每个结点处理存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段 hnext。我们的散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚我们提到的双向链表,另一个链是散列表中的拉链。前驱和后继指针是为了将结点串在双向链表中,hnext 指针是为了将结点串在散列表的拉链中。

首先,我们来看如何查找一个数据。我们前面讲过,散列表中查找数据的时间复杂度接近 O(1),所以通过散列表,我们可以很快地在缓存中找到一个数据。当找到数据之后,我们还需要将它移动到双向链表的尾部。其次,我们来看如何删除一个数据。我们需要找到数据所在的结点,然后将结点删除。借助散列表,我们可以在 O(1) 时间复杂度里找到要删除的结点。因为我们的链表是双向链表,双向链表可以通过前驱指针 O(1) 时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要 O(1) 的时间复杂度。最后,我们来看如何添加一个数据。添加数据到缓存稍微有点麻烦,我们需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。

Redis 有序集合

实际上,在有序集合中,每个成员对象有两个重要的属性,key(键值)和 score(分值)。我们不仅会通过 score 来查找数据,还会通过 key 来查找数据。
举个例子,比如用户积分排行榜有这样一个功能:我们可以通过用户的 ID 来查找积分信息,也可以通过积分区间来查找用户 ID 或者姓名信息。这里包含 ID、姓名和积分的用户信息,就是成员对象,用户 ID 就是 key,积分就是 score。所以,如果我们细化一下 Redis 有序集合的操作,那就是下面这样:

添加一个成员对象;
按照键值来删除一个成员对象;
按照键值来查找一个成员对象;
按照分值区间查找数据,比如查找积分在[100, 356]之间的成员对象;
按照分值从小到大排序成员变量;

我们可以再按照键值构建一个散列表,这样按照 key 来删除、查找一个成员对象的时间复杂度就变成了 O(1)。同时,借助跳表结构,其他操作也非常高效。

Java LinkedHashMap

现在我们再来看另外一个,Java 中的 LinkedHashMap 这种容器。
HashMap 底层是通过散列表这种数据结构实现的。而 LinkedHashMap 前面比 HashMap 多了一个“Linked”,这里的“Linked”是不是说,LinkedHashMap 是一个通过链表法解决散列冲突的散列表呢?实际上,LinkedHashMap 是通过双向链表和散列表这两种数据结构组合实现的。LinkedHashMap 中的“Linked”实际上是指的是双向链表,并非指用链表法解决散列冲突。
先来看一段代码。下面的代码会如何打印呢?

HashMap<Integer, Integer> m = new LinkedHashMap<>();
m.put(3, 11);
m.put(1, 12);
m.put(5, 23);
m.put(2, 22);for (Map.Entry e : m.entrySet()) {System.out.println(e.getKey());
}

上面的代码会按照数据插入的顺序依次来打印,也就是说,打印的顺序就是 3,1,5,2。你有没有觉得奇怪?散列表中数据是经过散列函数打乱之后无规律存储的,这里是如何实现按照数据的插入顺序来遍历打印的呢?LinkedHashMap 也是通过散列表和链表组合在一起实现的。实际上,它不仅支持按照插入顺序遍历数据,还支持按照访问顺序来遍历数据。
// 10是初始大小,0.75是装载因子,true是表示按照访问时间排序

HashMap<Integer, Integer> m = new LinkedHashMap<>(10, 0.75f, true);
m.put(3, 11);
m.put(1, 12);
m.put(5, 23);
m.put(2, 22);m.put(3, 26);
m.get(5);for (Map.Entry e : m.entrySet()) {System.out.println(e.getKey());
}

这段代码打印的结果是 1,2,3,5。每次调用 put() 函数,往 LinkedHashMap 中添加数据的时候,都会将数据添加到链表的尾部,所以,在前四个操作完成之后,链表中的数据是下面这样:
在这里插入图片描述
在第 8 行代码中,再次将键值为 3 的数据放入到 LinkedHashMap 的时候,会先查找这个键值是否已经有了,然后,再将已经存在的 (3,11) 删除,并且将新的 (3,26) 放到链表的尾部。所以,这个时候链表中的数据就是下面这样:
在这里插入图片描述
当第 9 行代码访问到 key 为 5 的数据的时候,我们将被访问到的数据移动到链表的尾部。所以,第 9 行代码之后,链表中的数据是下面这样:
在这里插入图片描述
所以,最后打印出来的数据是 1,2,3,5。

解答开篇 & 内容小结

总结一下,为什么散列表和链表经常一块使用?
散列表这种数据结构虽然支持非常高效的数据插入、删除、查找操作,但是散列表中的数据都是通过散列函数打乱之后无规律存储的。也就说,它无法支持按照某种顺序快速地遍历数据。如果希望按照顺序遍历散列表中的数据,那我们需要将散列表中的数据拷贝到数组中,然后排序,再遍历。因为散列表是动态数据结构,不停地有数据的插入、删除,所以每当我们希望按顺序遍历散列表中的数据的时候,都需要先排序,那效率势必会很低。为了解决这个问题,我们将散列表和链表(或者跳表)结合在一起使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/188273.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++类中public 和 protected 和 private访问权限 struct和class的区别 类成员设置为私有自己控制权限

public 和 protected 和 private访问权限 public 公共权限 类内可以访问 类外可以访问 protected 保护权限 类内可以访问 类外不可以访问 儿子可以访问父亲中的保护内容如父亲的车 private 私有权限 类内可以访问 类外不可以访问 儿子不可以访问父亲的私有权限内容如不想…

Linux 无名管道实现文件复制

无名管道 通过一个管道&#xff08;假象&#xff09;进行传输数据&#xff0c;但是这个管道的传输方式是单工&#xff08;半双工&#xff09;的&#xff0c;就是这个管道允许进行发送和接受数据&#xff0c;不过不能同时进行。 创建无名管道 这里用到一个pipe&#xff08;&…

基于黄金正弦算法优化概率神经网络PNN的分类预测 - 附代码

基于黄金正弦算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于黄金正弦算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于黄金正弦优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神…

Java内存区域速览

文章目录 JVM的组成加载字节码流程 运行时数据区-总览1. 程序计数器2. 虚拟机栈栈帧栈的运行原理 3. 本地方法栈4. 堆内存(Java Heap虚拟机对堆 的划分1. 年轻代&#xff08;Young Generation&#xff09;&#xff1a;2. 老年代&#xff08;Old Generation&#xff09;&#xf…

基于黏菌算法优化概率神经网络PNN的分类预测 - 附代码

基于黏菌算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于黏菌算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于黏菌优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络的光滑…

为什么Go是后端开发的未来

近年来&#xff0c;Go 编程语言的流行度迅速增加。Go 最初由 Google 开发&#xff0c;迅速成为后端开发中最受欢迎的语言之一&#xff0c;特别是在分布式系统和微服务的开发中。本文将讨论为什么 Go 是后端开发的未来。 Go 简介 Go&#xff0c;又称为 Golang&#xff0c;是由…

基于springboot实现私人健身与教练预约管理系统项目【项目源码+论文说明】

基于springboot实现私人健身与教练预约管理系统演示 摘要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应…

端口映射软件

今天给大家介绍一个自己制作的工具&#xff0c;本工具可以把本地自己的项目映射到外网可以访问,自己有域名可以使用自己的,没有可以用软件自带的三级域名! Token获取 地址&#xff1a;传送 打开上面网址注册账号&#xff0c;然后点击验证&#xff0c;复制里面的值即可。 软件…

JSplacement丨随机生成置换贴图

界面很简单&#xff0c;虽然是英文&#xff0c;但基本也能看懂&#xff0c;参数调一调&#xff0c;随机生成不重复的8K高清图片。 这种图片可能对普通人感觉很奇怪&#xff0c;有什么用呢&#xff1f;会C4D建模渲染的同学应该会明白&#xff0c;特别是建一些科技类的场景背景&a…

msvcp140.dll是什么东西以及如何解决其文件缺失问题

当我们在使用Windows电脑的过程中&#xff0c;有时候可能会遇到一些由于系统文件缺失或者损坏而导致的问题。其中&#xff0c;"msvcp140.dll缺失"就是一种常见的错误提示。msvcp140.dll究竟是什么&#xff1f;为什么它会缺失&#xff1f;又该如何解决这个问题呢&…

Express.js 与 Nest.js对比

Express.js 与 Nest.js对比 自从 Node.js 发布以来&#xff0c;Javascript 在后端领域的使用有所增加。由于 Node.js 的使用越来越多&#xff0c;每天都会有新的框架和工具发布。Express 和 Nest 是使用 Node.js 创建后端应用程序的最著名的框架之一&#xff0c;在本文中&…

Kafka入门教程与详解(一)

Kafka入门教程与详解&#xff08;一&#xff09; 一、Kafka入门教程 1.1 消息队列&#xff08;Message Queue) Message Queue消息传送系统提供传送服务。消息传送依赖于大量支持组件&#xff0c;这些组件负责处理连接服务、消息的路由和传送、持久性、安全性以及日志记录。消…