YOLOv5 配置C2模块构造新模型

🍨 本文为[🔗365天深度学习训练营学习记录博客
🍦 参考文章:365天深度学习训练营
🍖 原作者:[K同学啊]
🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

目标:在YOLOv5s网络模型中,修改common.py、yolo.py、yolov5s.yaml文件,将C2模块插入第2层与第3层之间,且跑通YOLOv5s。

操作步骤:

1.在common.py文件中插入C2模块

class C2(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

 

2.修改yolo.py文件,改动模型框架

def parse_model(d, ch):  # model_dict, input_channels(3)# Parse a YOLOv5 model.yaml dictionaryLOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')if act:Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()LOGGER.info(f"{colorstr('activation:')} {act}")  # printna = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchorsno = na * (nc + 5)  # number of outputs = anchors * (classes + 5)layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch outfor i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, argsm = eval(m) if isinstance(m, str) else m  # eval stringsfor j, a in enumerate(args):with contextlib.suppress(NameError):args[j] = eval(a) if isinstance(a, str) else a  # eval stringsn = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gainif m in {Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:c1, c2 = ch[f], args[0]if c2 != no:  # if not outputc2 = make_divisible(c2 * gw, 8)args = [c1, c2, *args[1:]]if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:args.insert(2, n)  # number of repeatsn = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)# TODO: channel, gw, gdelif m in {Detect, Segment}:args.append([ch[x] for x in f])if isinstance(args[1], int):  # number of anchorsargs[1] = [list(range(args[1] * 2))] * len(f)if m is Segment:args[3] = make_divisible(args[3] * gw, 8)elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # modulet = str(m)[8:-2].replace('__main__.', '')  # module typenp = sum(x.numel() for x in m_.parameters())  # number paramsm_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number paramsLOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # printsave.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelistlayers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)

函数用于将模型的模块拼接起来,搭建完成的网络模型。后续如果需要动模型框架的话,需要对这个函数做相应的改动。

修改前:

修改后:

 3.yolov5s.yaml文件中加入C2层

4.命令窗运行

python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt

运行结果: 

D:\yolov5-master>python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=D:/yolov5-master/models/yolov5s.yaml, data=D:/yolov5-master/data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2023-10-15 Python-3.10.7 torch-2.0.1+cpu CPUhyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4from  n    params  module                                  arguments
Traceback (most recent call last):File "D:\yolov5-master\train.py", line 647, in <module>main(opt)File "D:\yolov5-master\train.py", line 536, in maintrain(opt.hyp, opt, device, callbacks)File "D:\yolov5-master\train.py", line 130, in trainmodel = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # createFile "D:\yolov5-master\models\yolo.py", line 185, in __init__self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelistFile "D:\yolov5-master\models\yolo.py", line 319, in parse_modelBottleneckCSP, C2, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
NameError: name 'C2' is not defined. Did you mean: 'c2'?D:\yolov5-master>python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=D:/yolov5-master/models/yolov5s.yaml, data=D:/yolov5-master/data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2023-10-15 Python-3.10.7 torch-2.0.1+cpu CPUhyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4from  n    params  module                                  arguments0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]2                -1  1     18816  models.common.C3                        [64, 64, 1]3                -1  1     18816  models.common.C2                        [64, 64, 1]4                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]5                -1  2    115712  models.common.C3                        [128, 128, 2]6                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]7                -1  3    625152  models.common.C3                        [256, 256, 3]8                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]9                -1  1   1182720  models.common.C3                        [512, 512, 1]10                -1  1    656896  models.common.SPPF                      [512, 512, 5]11                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']13           [-1, 6]  1         0  models.common.Concat                    [1]14                -1  1    361984  models.common.C3                        [512, 256, 1, False]15                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]16                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']17           [-1, 4]  1         0  models.common.Concat                    [1]18                -1  1     90880  models.common.C3                        [256, 128, 1, False]19                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]20          [-1, 14]  1         0  models.common.Concat                    [1]21                -1  1    329216  models.common.C3                        [384, 256, 1, False]22                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]23          [-1, 10]  1         0  models.common.Concat                    [1]24                -1  1   1313792  models.common.C3                        [768, 512, 1, False]25      [17, 20, 23]  1     38097  models.yolo.Detect                      [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [256, 384, 768]]
YOLOv5s summary: 232 layers, 7226897 parameters, 7226897 gradients, 17.2 GFLOPsTransferred 49/379 items from yolov5s.pt
WARNING  --img-size 900 must be multiple of max stride 32, updating to 928
optimizer: SGD(lr=0.01) with parameter groups 62 weight(decay=0.0), 65 weight(decay=0.0005), 65 bias
train: Scanning D:\yolov5-master\Y2\train... 1 images, 0 backgrounds, 159 corrupt: 100%|██████████| 160/160 [00:13<00:0
train: WARNING   D:\yolov5-master\Y2\images\fruit1.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit1.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit10.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit10.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit100.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit100.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit102.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit102.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit103.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit103.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit104.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit104.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit106.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit106.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit108.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit108.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit109.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit109.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit11.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit11.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit110.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit110.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit111.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit111.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit113.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit113.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit114.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit114.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit115.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit115.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit116.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit116.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit117.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit117.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit118.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit118.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit119.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit119.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit12.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit12.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit120.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit120.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit121.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit121.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit122.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit122.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit123.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit123.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit124.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit124.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit125.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit125.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit127.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit127.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit129.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit129.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit13.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit13.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit130.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit130.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit131.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit131.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit132.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit132.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit133.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit133.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit134.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit134.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit135.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit135.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit136.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit136.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit138.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit138.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit14.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit14.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit142.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit142.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit143.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit143.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit144.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit144.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit145.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit145.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit147.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit147.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit148.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit148.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit149.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit149.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit15.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit15.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit151.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit151.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit152.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit152.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit155.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit155.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit156.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit156.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit157.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit157.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit158.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit158.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit159.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit159.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit16.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit16.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit161.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit161.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit162.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit162.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit163.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit163.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit164.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit164.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit165.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit165.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit167.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit167.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit168.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit168.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit169.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit169.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit17.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit17.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit170.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit170.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit171.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit171.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit172.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit172.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit173.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit173.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit174.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit174.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit175.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit175.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit176.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit176.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit177.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit177.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit178.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit178.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit179.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit179.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit18.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit18.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit180.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit180.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit181.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit181.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit182.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit182.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit183.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit183.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit184.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit184.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit185.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit185.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit186.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit186.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit187.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit187.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit188.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit188.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit19.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit19.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit196.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit196.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit197.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit197.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit198.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit198.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit199.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit199.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit2.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit2.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit200.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit200.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit202.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit202.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit208.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit208.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit209.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit209.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit211.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit211.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit22.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit22.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit23.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit23.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit25.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit25.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit26.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit26.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit27.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit27.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit28.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit28.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit29.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit29.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit3.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit3.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit30.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit30.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit31.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit31.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit33.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit33.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit34.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit34.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit35.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit35.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit36.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit36.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit38.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit38.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit39.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit39.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit4.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit4.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit40.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit40.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit43.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit43.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit44.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit44.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit45.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit45.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit46.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit46.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit49.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit49.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit50.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit50.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit51.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit51.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit52.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit52.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit53.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit53.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit54.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit54.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit55.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit55.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit57.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit57.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit59.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit59.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit6.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit6.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit60.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit60.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit61.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit61.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit62.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit62.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit63.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit63.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit65.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit65.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit66.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit66.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit68.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit68.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit69.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit69.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit7.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit7.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit70.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit70.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit71.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit71.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit73.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit73.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit74.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit74.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit75.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit75.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit77.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit77.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit78.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit78.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit79.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit79.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit80.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit80.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit81.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit81.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit82.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit82.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit83.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit83.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit85.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit85.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit86.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit86.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit87.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit87.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit88.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit88.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit89.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit89.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit90.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit90.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit91.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit91.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit94.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit94.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit95.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit95.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit97.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit97.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit98.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit98.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit99.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit99.png'
train: WARNING  Cache directory D:\yolov5-master\Y2 is not writeable: [WinError 183] : 'D:\\yolov5-master\\Y2\\train.cache.npy' -> 'D:\\yolov5-master\\Y2\\train.cache'
val: Scanning D:\yolov5-master\Y2\val.cache... 1 images, 0 backgrounds, 19 corrupt: 100%|██████████| 20/20 [00:00<?, ?i
val: WARNING   D:\yolov5-master\Y2\images\fruit107.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit107.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit112.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit112.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit139.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit139.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit140.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit140.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit141.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit141.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit146.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit146.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit20.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit20.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit210.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit210.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit24.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit24.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit32.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit32.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit41.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit41.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit47.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit47.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit48.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit48.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit5.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit5.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit64.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit64.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit8.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit8.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit84.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit84.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit92.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit92.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit96.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit96.png'AutoAnchor: 4.33 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset
Plotting labels to runs\train\exp12\labels.jpg...
Image sizes 928 train, 928 val
Using 0 dataloader workers
Logging results to runs\train\exp12
Starting training for 100 epochs...Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size0/99         0G     0.1123    0.06848    0.04815          7        928:   0%|          | 0/1 [00:01<?, ?it/s]WARNING  TensorBoard graph visualization failure Sizes of tensors must match except in dimension 1. Expected size 58 but got size 57 for tensor number 1 in the list.0/99         0G     0.1123    0.06848    0.04815          7        928: 100%|██████████| 1/1 [00:02<00:00,  2.97Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00439      0.333     0.0474     0.0121Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size1/99         0G     0.1105    0.06846    0.04628          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00926      0.333     0.0332     0.0154Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size2/99         0G     0.1139    0.05816    0.04684          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00926      0.333     0.0332     0.0154Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size3/99         0G    0.07328    0.05078    0.03088          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0119      0.333     0.0123    0.00369Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size4/99         0G    0.06693    0.05186    0.03044          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.47Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0119      0.333     0.0123    0.00369Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size5/99         0G     0.1102    0.09702    0.04647         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0119      0.333     0.0123    0.00369Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size6/99         0G     0.1147    0.07053    0.04376          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.48Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size7/99         0G    0.06716    0.05544    0.02962          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.43Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size8/99         0G     0.1161    0.05993    0.04253          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size9/99         0G     0.1187    0.05657     0.0432          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size10/99         0G     0.1163    0.09305    0.04868         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.50Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size11/99         0G    0.07575    0.04969    0.03171          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.42Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size12/99         0G     0.1092    0.09129      0.045         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.43Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size13/99         0G     0.1003    0.05476    0.04605          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size14/99         0G    0.07006    0.05166    0.03166          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.43Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size15/99         0G     0.1156    0.05315    0.04495          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.43Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size16/99         0G     0.1143     0.0559      0.045          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.48Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size17/99         0G    0.08845     0.0449    0.02645          2        928: 100%|██████████| 1/1 [00:01<00:00,  1.43Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size18/99         0G     0.1189    0.05909    0.04975          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size19/99         0G     0.1113    0.05739    0.04547          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.46Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size20/99         0G      0.117    0.07437    0.04842         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size21/99         0G      0.109    0.06155     0.0505          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size22/99         0G     0.1073     0.1035    0.04515         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.46Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size23/99         0G     0.1257     0.0527    0.04264          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size24/99         0G     0.1036     0.0745    0.04745          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.50Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size25/99         0G     0.1112     0.1054    0.04881         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size26/99         0G     0.1053    0.08021    0.04656          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size27/99         0G     0.1208    0.05651    0.04577          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size28/99         0G    0.07633     0.0537    0.03023          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.46Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size29/99         0G     0.1162    0.05969    0.04597          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size30/99         0G     0.1117    0.07415    0.04961          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size31/99         0G     0.1132    0.06359    0.04704          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.46Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size32/99         0G    0.08006    0.05026    0.02591          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size33/99         0G     0.1117      0.104    0.04704         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size34/99         0G     0.1135    0.06241    0.04401          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size35/99         0G     0.1117    0.07476    0.04524          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size36/99         0G     0.1134    0.09759    0.04479         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size37/99         0G     0.1184    0.06637    0.04515          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.45Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size38/99         0G    0.08484    0.04526    0.02921          2        928: 100%|██████████| 1/1 [00:01<00:00,  1.50Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size39/99         0G    0.09749     0.0813    0.04582          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.57Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size40/99         0G     0.1117    0.07415      0.046          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.63Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size41/99         0G     0.1117    0.07245    0.04489          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.68Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size42/99         0G     0.1094    0.05986    0.04839          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size43/99         0G     0.1097     0.0697    0.04865          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.65Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size44/99         0G     0.1108    0.09187    0.04328         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.57Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size45/99         0G     0.1126    0.05993      0.047          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.52Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size46/99         0G     0.0688    0.05024    0.03075          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.53Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size47/99         0G      0.112    0.09688    0.04424         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size48/99         0G     0.1166    0.06569    0.04565          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.53Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size49/99         0G     0.1118    0.05801    0.04417          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size50/99         0G     0.1097     0.1048    0.04665         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size51/99         0G     0.1218    0.06085    0.04525          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.83Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size52/99         0G     0.1056    0.08698    0.04532          9        928: 100%|██████████| 1/1 [00:01<00:00,  1.66Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size53/99         0G    0.06761    0.05242    0.03217          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.68Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size54/99         0G     0.1044     0.1022     0.0441         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.60Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size55/99         0G     0.1269    0.05652    0.04289          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.87Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size56/99         0G     0.1112     0.0772    0.04683          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.86Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size57/99         0G     0.1144    0.05499    0.04611          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.78Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size58/99         0G    0.07043     0.0666     0.0297          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size59/99         0G     0.1092    0.09867    0.04592         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.72Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size60/99         0G       0.12    0.05285    0.04611          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size61/99         0G     0.0728    0.05391    0.02953          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.75Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size62/99         0G     0.1164    0.05441    0.04357          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.91Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size63/99         0G     0.1123     0.1039     0.0476         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.82Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size64/99         0G     0.1089      0.064    0.04559          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.69Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size65/99         0G     0.1152    0.07665    0.04802          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.64Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size66/99         0G     0.1186    0.06205     0.0432          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.74Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size67/99         0G      0.114    0.06644    0.04486          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.88Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size68/99         0G     0.1118    0.05814    0.04571          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.89Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size69/99         0G      0.106     0.0762    0.04522          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.88Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size70/99         0G     0.1068    0.06769      0.048          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size71/99         0G       0.11     0.1035    0.04768         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.64Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size72/99         0G     0.1071    0.05783    0.04588          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size73/99         0G      0.107    0.06332    0.04598          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.72Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size74/99         0G     0.1127    0.09514    0.04832         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size75/99         0G    0.07471    0.05085    0.03363          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.62Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size76/99         0G    0.07295    0.05077    0.03028          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.68Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size77/99         0G     0.1221     0.0522     0.0502          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.73Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size78/99         0G     0.1159    0.05984    0.04441          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.86Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size79/99         0G     0.0764    0.05256    0.03172          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.81Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size80/99         0G    0.07563    0.05452    0.03032          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.73Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size81/99         0G    0.06719     0.0531    0.02945          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.67Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size82/99         0G     0.1076    0.06686    0.04691          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.68Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size83/99         0G     0.1112    0.07135    0.04413          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.70Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size84/99         0G     0.1116    0.09399    0.04413         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.63Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size85/99         0G     0.1116    0.06021    0.04635          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.67Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size86/99         0G     0.1096     0.1032    0.04634         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.66Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size87/99         0G     0.1143    0.05941    0.04396          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.66Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size88/99         0G     0.1161     0.0518    0.04673          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.66Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size89/99         0G     0.1106    0.05528    0.04363          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.65Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size90/99         0G     0.1238    0.05427    0.04809          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.66Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size91/99         0G     0.1104    0.06561    0.04492          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.67Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size92/99         0G     0.1137    0.08532    0.04445         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.70Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size93/99         0G     0.1125    0.07016    0.04628          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.65Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size94/99         0G     0.1116    0.05724    0.04418          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.63Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size95/99         0G     0.1124     0.1026    0.04744         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.77Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size96/99         0G      0.117    0.05599    0.04682          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.71Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size97/99         0G      0.124     0.0617    0.04387          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.75Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size98/99         0G     0.1126     0.1009    0.04399         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.64Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size99/99         0G    0.06937    0.05515    0.03017          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.68Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0100 epochs completed in 0.067 hours.
Optimizer stripped from runs\train\exp12\weights\last.pt, 15.0MB
Optimizer stripped from runs\train\exp12\weights\best.pt, 15.0MBValidating runs\train\exp12\weights\best.pt...
Fusing layers...
YOLOv5s summary: 170 layers, 7217201 parameters, 0 gradients, 17.0 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0115      0.333     0.0369      0.012banana          1          1          0          0          0          0snake fruit          1          1          0          0          0          0pineapple          1          1     0.0345          1      0.111     0.0359
Results saved to runs\train\exp12

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/188539.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法通关村第八关-黄金挑战

大家好我是苏麟 ...... 路径总和2 描述 : 给你二叉树的根节点 root 和一个整数目标和 targetSum &#xff0c;找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。 叶子节点 是指没有子节点的节点。 题目 : LeetCode 113.路径总和2 113. 路径总和 II 分析 : 这…

Oracle OCM考试(史上最详细的介绍,需要19c OCP的证书)

Oracle 19c OCM考试和之前版本的OCM考试差不多&#xff0c;对于考生来说最大的难点是题量大&#xff0c;每场3小时&#xff0c;一共4场&#xff0c;敲键盘敲得手抽筋。姚远老师&#xff08;v:dataace&#xff09;的很多Oracle OCP学员都对19c OCM考试很有兴趣&#xff0c;这里给…

Linux输入设备应用编程(键盘,按键,触摸屏,鼠标)

目录 一 输入设备编程介绍 1.1 什么是输入设备呢&#xff1f; 1.2 什么是输入设备的应用编程&#xff1f; 1.3 input子系统 1.4 数据读取流程 1.5 应用程序如何解析数据 1.5.1 按键类事件&#xff1a; 1.5.2 相对位移事件 1.5.3 绝对位移事件 二 读取 struct input_e…

云课五分钟-07安装Opera失败-版本不匹配

前篇&#xff1a; 云课五分钟-06一段代码调试debug-AI与人工 其中已经遇到了一些问题&#xff0c;在和文心一言交互过程中&#xff0c;由于提问不合适&#xff0c;得不到所期望的结果。 那么这一节本可以避免&#xff0c;但是为了展示失败&#xff0c;需要将过程录制。 视频…

网络营销|如何利用line拓展东南亚市场

Line在亚洲地区非常流行&#xff0c;特别是在日本、台湾、泰国等地&#xff0c;是当地最受欢迎的即时通讯应用之一。 除了基本的聊天功能外&#xff0c;Line还提供了各种各样的贴图、表情包和游戏等娱乐功能&#xff0c;吸引了大量的用户。 一、选择利用line进行海外营销的原…

求组合数(笔记)

//组合数2&#xff0c;取值在1e5 //Cab a! / (a - b)! * b! #include<iostream> using namespace std; using ll long long; const ll N 1e4 9, mod 1e9 7; ll fact[N], infact[N];//阶乘&#xff0c;逆元阶乘ll qmi(ll a, ll k, ll p)//逆元模板 {ll res 1;while…

新手必看!!STM32定时器简介

一、定时器有哪些&#xff1f; 定时器分为三大类&#xff1a;基本定时器、通用定时器和高级定时器。 二、每个定时器的功能以及使用场景 1. 基本定时器&#xff08;Basic Timers&#xff09;&#xff1a; 功能&#xff1a; 基本定时器具有较为简单的功能&#xff0c;通常用于…

MIB 6.1810实验Xv6 and Unix utilities(4)primes

难度: hard/moderate Write a concurrent prime sieve program for xv6 using pipes and the design illustrated in the picture halfway down this page and the surrounding text. This idea is due to Doug McIlroy, inventor of Unix pipes. Your solution should be in …

OpenCV快速入门:绘制图形、图像金字塔和感兴趣区域

文章目录 前言一、绘制图形1. 绘制直线2. 绘制圆3. 绘制矩形4. 绘制椭圆5. 绘制多边形6. 绘制文字7. 可选参数8. 手工绘制OpenCV的logo 二、图像金字塔1. 高斯金字塔2. 拉普拉斯金字塔 三、感兴趣区域&#xff08;ROI&#xff09;数组切片方式OpenCV截取方式 总结 前言 OpenCV…

【漏洞复现】用友移动管理系统文件上传

漏洞描述 用友移动系统管理旧版本uploadApk接口存在任意文件上传&#xff0c;攻击者可在无需登录的情况下上传恶意文件&#xff0c;执行任意命令 免责声明 技术文章仅供参考&#xff0c;任何个人和组织使用网络应当遵守宪法法律&#xff0c;遵守公共秩序&#xff0c;尊重社…

阿桂天山的小工具:我将16个Excel文件中31万多条数据拆分成318个文件

1.话不多说,先上图看效果 2.技术说明及实用源码 2.1)pythonflaskpandas , 由于我的开发环境版本问题,为了能读xls,xlsx,但又不想升级,只能通过xlrd 1.2.0读取xls,xlsx文件再转换成dict字典格式,再通过 data pd.DataFrame(dict_data)实现类型转换 2.2)实用代码,保证不丢任何一行…

python爬取穷游网景点评论

爬取穷游网的景点评论数据&#xff0c;使用selenium爬取edge浏览器的网页文本数据。 同程的评论数据还是比较好爬取&#xff0c;不像大众点评需要你登录验证杂七杂八的&#xff0c;只需要找准你想要爬取的网页链接就能拿到想要的文本数据。 这里就不得不提一下爬取过程中遇到的…