【数据结构(二)】稀疏 sparsearray 数组(1)

文章目录

  • 1. 稀疏数组的应用场景
    • 1.1. 一个实际的需求
    • 1.2. 基本介绍
  • 2. 稀疏数组转换的思路分析
  • 3. 稀疏数组的代码实现
    • 3.1. 二维数组转稀疏数组
    • 3.2. 稀疏数组转二维数组
  • 4. 课后练习


1. 稀疏数组的应用场景

1.1. 一个实际的需求

问题:
    编写的五子棋程序中,有存盘退出和续上盘的功能。

在这里插入图片描述

分析问题:
    因为该二维数组的很多值是默认值 0, 因此记录了很多没有意义的数据 -> 稀疏数组

1.2. 基本介绍

     当一个数组中大部分元素为0,或者为同一个值的数组时,可以使用稀疏数组来保存该数组。

稀疏数组的处理方法:
    ①记录数组一共有几行几列,有多少个不同的值
    ②把具有不同值的元素的行列及值记录在一个小规模的数组中,从而缩小程序的规模

在这里插入图片描述

上图右表中:
    第[0]行表示:数组大小是6×7,共有8个不为0的值;下面每一行都代表不为0的数值所在的行列数,[1]~[8]共有8个。

2. 稀疏数组转换的思路分析

1. 步骤
    ①使用稀疏数组,来保留类似前面的二维数组(棋盘、地图等等)
    ②把稀疏数组存盘,并且可以从新恢复原来的二维数组数
    

2. 整体思路分析

在这里插入图片描述

二维数组稀疏数组的思路

  1. 遍历 原始的二维数组,得到有效数据的个数 sum(上图为:2)
  2. 根据sum 就可以创建 稀疏数组 sparseArr int[sum + 1] [3](上图为:[3][3])
  3. 将二维数组的有效数据数据存入到 稀疏数组
        

稀疏数组 转 原始的二维数组的思路

  1. 先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组,比如上面的 chessArr2 = int [11][11]
  2. 在读取稀疏数组后几行的数据,并赋给 原始的二维数组 即可。

3. 稀疏数组的代码实现

3.1. 二维数组转稀疏数组

package sparsearray;public class SparseArray {public static void main(String[] args) {//创建一个原始的二维数组11×11//0表示没有棋子,1表示黑子,2表示蓝子int chessArr1[][] = new int[11][11];chessArr1[1][2] = 1;chessArr1[2][3] = 2;//可以在后面继续加棋子//输出原始的二维数组for(int[] row : chessArr1){for(int data : row){System.out.printf("%d\t", data);}System.out.println();}//将二维数组 转 稀疏数组//1.先遍历二维数组,得到非0数据的个数System.out.println("数组的长度为:" + chessArr1.length);int sum = 0;for(int i = 0; i < chessArr1.length; i++){for(int j = 0; j < chessArr1.length; j++){if(chessArr1[i][j] != 0){sum ++;}}}System.out.println("sum=" + sum);//2. 创建对应的稀疏数组int sparseArr[][] = new int[sum + 1][3];//给稀疏数组赋值sparseArr[0][0] = 11;sparseArr[0][1] = 11;sparseArr[0][2] = sum;//遍历二维数组,将非0的值存放到sparseArr中int count = 0; //count 用于记录是第几个非0数据for(int i = 0; i < chessArr1.length; i++){for(int j = 0; j < chessArr1.length; j++){if(chessArr1[i][j] != 0){count++;sparseArr[count][0] = i;sparseArr[count][1] = j;sparseArr[count][2] = chessArr1[i][j];}}}//输出稀疏数组的形式System.err.println();System.out.println("得到的稀疏数组为~~~");for(int i = 0; i < sparseArr.length; i++){System.out.printf("%d\t%d\t%d\t\n", sparseArr[i][0], sparseArr[i][1], sparseArr[i][2]);}System.out.println();}
}

运行结果:

在这里插入图片描述


如果在棋盘上继续加子,如在第5行第6列加一个黑子chessArr1[4][5] = 1;

代码:

package sparsearray;public class SparseArray {public static void main(String[] args) {//创建一个原始的二维数组11×11//0表示没有棋子,1表示黑子,2表示蓝子int chessArr1[][] = new int[11][11];chessArr1[1][2] = 1;chessArr1[2][3] = 2;chessArr1[4][5] = 1;//输出原始的二维数组for(int[] row : chessArr1){for(int data : row){System.out.printf("%d\t", data);}System.out.println();}//将二维数组 转 稀疏数组//1.先遍历二维数组,得到非0数据的个数System.out.println("数组的长度为:" + chessArr1.length);int sum = 0;for(int i = 0; i < chessArr1.length; i++){for(int j = 0; j < chessArr1.length; j++){if(chessArr1[i][j] != 0){sum ++;}}}System.out.println("sum=" + sum);//2. 创建对应的稀疏数组int sparseArr[][] = new int[sum + 1][3];//给稀疏数组赋值sparseArr[0][0] = 11;sparseArr[0][1] = 11;sparseArr[0][2] = sum;//遍历二维数组,将非0的值存放到sparseArr中int count = 0; //count 用于记录是第几个非0数据for(int i = 0; i < chessArr1.length; i++){for(int j = 0; j < chessArr1.length; j++){if(chessArr1[i][j] != 0){count++;sparseArr[count][0] = i;sparseArr[count][1] = j;sparseArr[count][2] = chessArr1[i][j];}}}//输出稀疏数组的形式System.err.println();System.out.println("得到的稀疏数组为~~~");for(int i = 0; i < sparseArr.length; i++){System.out.printf("%d\t%d\t%d\t\n", sparseArr[i][0], sparseArr[i][1], sparseArr[i][2]);}System.out.println();}
}

运行结果:

在这里插入图片描述

3.2. 稀疏数组转二维数组

package sparsearray;public class SparseArray {public static void main(String[] args) {//创建一个原始的二维数组11×11//0表示没有棋子,1表示黑子,2表示蓝子int chessArr1[][] = new int[11][11];chessArr1[1][2] = 1;chessArr1[2][3] = 2;chessArr1[4][5] = 1;//输出原始的二维数组for(int[] row : chessArr1){for(int data : row){System.out.printf("%d\t", data);}System.out.println();}//将二维数组 转 稀疏数组//1.先遍历二维数组,得到非0数据的个数System.out.println("数组的长度为:" + chessArr1.length);int sum = 0;for(int i = 0; i < chessArr1.length; i++){for(int j = 0; j < chessArr1.length; j++){if(chessArr1[i][j] != 0){sum ++;}}}System.out.println("sum=" + sum);//2. 创建对应的稀疏数组int sparseArr[][] = new int[sum + 1][3];//给稀疏数组赋值sparseArr[0][0] = 11;sparseArr[0][1] = 11;sparseArr[0][2] = sum;//遍历二维数组,将非0的值存放到sparseArr中int count = 0; //count 用于记录是第几个非0数据for(int i = 0; i < chessArr1.length; i++){for(int j = 0; j < chessArr1.length; j++){if(chessArr1[i][j] != 0){count++;sparseArr[count][0] = i;sparseArr[count][1] = j;sparseArr[count][2] = chessArr1[i][j];}}}//输出稀疏数组的形式System.err.println();System.out.println("得到的稀疏数组为~~~");for(int i = 0; i < sparseArr.length; i++){System.out.printf("%d\t%d\t%d\t\n", sparseArr[i][0], sparseArr[i][1], sparseArr[i][2]);}System.out.println();//将稀疏数组-->恢复成 原始的二维数组/*** 1. 先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组,比如上面的  chessArr2 = int [11][11]* 2. 在读取稀疏数组后几行的数据,并赋给 原始的二维数组 即可。*///1. 先读取稀疏数组的第一行,根据第一行的数据,创建原始的二维数组int chessArr2[][] = new int[sparseArr[0][0]][sparseArr[0][1]];//2. 在读取稀疏数组后几行的数据(从第二行开始),并赋给 原始的二维数组 即可。for(int i = 1; i < sparseArr.length; i++){chessArr2[sparseArr[i][0]][sparseArr[i][1]] = sparseArr[i][2];}//输出恢复后的二维数组System.err.println();System.out.println("恢复后的二维数组");for(int[] row : chessArr2){for(int data : row){System.out.printf("%d\t", data);}System.out.println();}}
}

运行结果:

在这里插入图片描述


4. 课后练习

    
要求:
(1)在前面的基础上,将稀疏数组保存到磁盘上,比如 map.data
(2)恢复原来的数组时,读取 map.data 进行恢复

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/188628.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

长短期记忆(LSTM)与RNN的比较:突破性的序列训练技术

长短期记忆&#xff08;Long short-term memory, LSTM&#xff09;是一种特殊的RNN&#xff0c;主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说&#xff0c;就是相比普通的RNN&#xff0c;LSTM能够在更长的序列中有更好的表现。 Why LSTM提出的动机是为了解…

原论文一比一复现 | 更换 RT-DETR 主干网络为 【VGG13】【VGG16】【VGG19】| 对比实验必备

本专栏内容均为博主独家全网首发,未经授权,任何形式的复制、转载、洗稿或传播行为均属违法侵权行为,一经发现将采取法律手段维护合法权益。我们对所有未经授权传播行为保留追究责任的权利。请尊重原创,支持创作者的努力,共同维护网络知识产权。 论文地址:https://arxiv.o…

ARM 版 Kylin V10 部署 KubeSphere 3.4.0 不完全指南

前言 知识点 定级&#xff1a;入门级KubeKey 安装部署 ARM 版 KubeSphere 和 KubernetesARM 版麒麟 V10 安装部署 KubeSphere 和 Kubernetes 常见问题 实战服务器配置 (个人云上测试服务器) 主机名IPCPU内存系统盘数据盘用途ksp-master-1172.16.33.1681650200KubeSphere/k8…

数据结构树与二叉树的实现

目录 一、普通树的存储结构 1、双亲表示法 2.孩子表示法 二、二叉树 1.二叉树的顺序存储&#xff08;必须是完全二叉树&#xff0c;否则很浪费空间&#xff09; 1&#xff09;结构体 2.二叉树的链式存储 1&#xff09;结构体 2&#xff09;操作 1.创建一颗二叉树 2.创…

侧面多级菜单(一个大类、一个小类、小类下多个物体)

效果&#xff1a; 说明&#xff1a; 左右侧面板使用Animator组件控制滑入滑出。左侧面板中&#xff0c;左的左里面是大类&#xff0c;左的右有绿色的小类&#xff0c;绿色的小类下有多个真正的UI图片按钮。 要点&#xff1a; 结合了一点EasyGridBuilderPro插件的UI元素&…

数字艺术藏品软件的独特创新与未来趋势

随着科技的飞速发展&#xff0c;数字艺术藏品软件逐渐崭露头角&#xff0c;为艺术爱好者们提供了一个全新的收藏方式。这类软件不仅为艺术家提供了展示作品的平台&#xff0c;也为收藏家们提供了收藏和分享艺术品的渠道。本文将从开发思路、技术实现、市场前景等方面探讨数字艺…

业务流程图用什么软件画?这10款流程图软件,好用到飞起!

业务流程图是什么&#xff1f; 业务流程图是一种用于表示业务过程中活动流向的图形表示方法&#xff0c;它使用标准化的图形元素&#xff08;如箭头、椭圆、方框等&#xff09;来表达一个过程中各个环节之间的关系。在这个图形表示中&#xff0c;每个元素都有特定的含义和功能…

(论文阅读)TiDB:一款基于Raft的HTAP数据库

引言 混合事务分析处理&#xff08;HTAP&#xff09;数据库要求隔离处理事务查询和分析查询&#xff0c;以消除它们之间的干扰。要实现这一点&#xff0c;有必要维护为这两种查询类型指定的数据的不同副本。然而&#xff0c;为存储系统中的分布式副本提供一致的视图是一项挑战…

OSPF开放最短路径优先(Open Shortest Path First)协议

OSPF开放最短路径优先(Open Shortest Path First)协议 为克服RIP的缺点(限制网络规模&#xff0c;坏消息传得慢)在1989年开发出来的原理很简单&#xff0c;但实现很复杂使用了Dijkstra提出的最短路径算法SPF(Shortest Path First)采用分布式的链路状态协议(link state protoco…

Postman实现接口的文件上传

近期在复习Postman的基础知识&#xff0c;在小破站上跟着百里老师系统复习了一遍&#xff0c;也做了一些笔记&#xff0c;希望可以给大家一点点启发。 接口的文件上传&#xff0c;与其他接口的传参差不多&#xff0c;只要点击form-data&#xff0c;选择要上传的文件即可。 实际…

2024年山东省职业院校技能大赛中职组“网络安全”赛项竞赛试题-A

2024年山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题-A 一、竞赛时间 总计&#xff1a;360分钟 二、竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 A、B模块 A-1 登录安全加固 180分钟 200分 A-2 本地安全策略设置 A-3 流量完整性保护 A-4 …

怎么为pdf加水印?

怎么为pdf加水印&#xff1f;最近很多小伙伴都有这样的疑问。你可以在浏览器上搜索一下&#xff0c;关于这方面的很多还是有很多人不是很清楚的。虽然我们自己在很多PDF文件上都看到了水印&#xff0c;那么真的到了自己这边需要进行操作的时候&#xff0c;确实还是有些这样或是…