机器学习 天气识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/Nb93582M_5usednAKp_Jtw) 中的学习记录博客**
>- **🍖 原作者:[K同学啊 | 接辅导、项目定制](https://mtyjkh.blog.csdn.net/)**
>- **🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)**

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasetsimport os,PIL,pathlib,randomdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")print(device)

输出:

device(type='cpu')

2. 导入数据

data_dir = './data/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
print(classeNames)

输出:

['cloudy', 'rain', 'shine', 'sunrise']
  • 第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。
  • 第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
  • 第三步:通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames
  • 第四步:打印classeNames列表,显示每个文件所属的类别名称。
import matplotlib.pyplot as plt
from PIL import Image# 指定图像文件夹路径
image_folder = './data/cloudy/'# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):img_path = os.path.join(image_folder, img_file)img = Image.open(img_path)ax.imshow(img)ax.axis('off')# 显示图像
plt.tight_layout()
plt.show()

total_datadir = './data/'# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

输出结果:

Dataset ImageFolderNumber of datapoints: 1125Root location: ./data/StandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

代码输出:

(<torch.utils.data.dataset.Subset at 0x1cd91e01ee0>,<torch.utils.data.dataset.Subset at 0x1cd91e01f70>)
  • train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;
  • test_size表示测试集大小,是总体数据长度减去训练集大小。

使用torch.utils.data.random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量。

batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

torch.utils.data.DataLoader()参数详解

torch.utils.data.DataLoader 是 PyTorch 中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoader 构造函数接受多个参数,下面是一些常用的参数及其解释:

  1. dataset(必需参数):这是你的数据集对象,通常是 torch.utils.data.Dataset 的子类,它包含了你的数据样本。
  2. batch_size(可选参数):指定每个小批次中包含的样本数。默认值为 1。
  3. shuffle(可选参数):如果设置为 True,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为 False
  4. num_workers(可选参数):用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。
  5. pin_memory(可选参数):如果设置为 True,则数据加载到 GPU 时会将数据存储在 CUDA 的锁页内存中,这可以加速数据传输到 GPU。默认值为 False
  6. drop_last(可选参数):如果设置为 True,则在最后一个小批次可能包含样本数小于 batch_size 时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为 False
  7. timeout(可选参数):如果设置为正整数,它定义了每个子进程在等待数据加载器传递数据时的超时时间(以秒为单位)。这可以用于避免子进程卡住的情况。默认值为 0,表示没有超时限制。
  8. worker_init_fn(可选参数):一个可选的函数,用于初始化每个子进程的状态。这对于设置每个子进程的随机种子或其他初始化操作很有用。

二、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

⭐1. torch.nn.Conv2d()详解

函数原型

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

关键参数说明

  • in_channels ( int ) – 输入图像中的通道数
  • out_channels ( int ) – 卷积产生的通道数
  • kernel_size ( int or tuple ) – 卷积核的大小
  • stride ( int or tuple , optional ) -- 卷积的步幅。默认值:1
  • padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
  • padding_mode (字符串,可选) – 'zeros', 'reflect', 'replicate'或'circular'. 默认:'zeros'

⭐2. torch.nn.Linear()详解

函数原型

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

关键参数说明

  • in_features:每个输入样本的大小
  • out_features:每个输出样本的大小

⭐3. torch.nn.MaxPool2d()详解

函数原型

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

关键参数说明

  • kernel_size:最大的窗口大小
  • stride:窗口的步幅,默认值为kernel_size
  • padding:填充值,默认为0
  • dilation:控制窗口中元素步幅的参数

大家注意一下在卷积层和全连接层之间,我们可以使用之前是torch.flatten()也可以使用我下面的x.view()亦或是torch.nn.Flatten()torch.nn.Flatten()与TensorFlow中的Flatten()层类似,前两者则仅仅是一种数据集拉伸操作(将二维数据拉伸为一维),torch.flatten()方法不会改变x本身,而是返回一个新的张量。而x.view()方法则是直接在原有数据上进行操作。

网络结构图(可单击放大查看)

import torch.nn.functional as Fclass Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24*50*50, len(classeNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))      x = F.relu(self.bn2(self.conv2(x)))     x = self.pool(x)                        x = F.relu(self.bn4(self.conv4(x)))     x = F.relu(self.bn5(self.conv5(x)))  x = self.pool(x)                        x = x.view(-1, 24*50*50)x = self.fc1(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = Network_bn().to(device)
model
Using cpu deviceNetwork_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(fc1): Linear(in_features=60000, out_features=4, bias=True)
)

三、 训练模型

1. 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2. 编写训练函数

1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

2. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4. 正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:61.4%, Train_loss:0.986, Test_acc:72.0%,Test_loss:0.865
Epoch: 2, Train_acc:76.7%, Train_loss:0.674, Test_acc:83.6%,Test_loss:0.558
Epoch: 3, Train_acc:80.8%, Train_loss:0.561, Test_acc:88.4%,Test_loss:0.447
Epoch: 4, Train_acc:83.6%, Train_loss:0.485, Test_acc:90.2%,Test_loss:0.431
Epoch: 5, Train_acc:86.3%, Train_loss:0.423, Test_acc:89.8%,Test_loss:0.354
Epoch: 6, Train_acc:86.3%, Train_loss:0.418, Test_acc:88.4%,Test_loss:0.306
Epoch: 7, Train_acc:87.6%, Train_loss:0.389, Test_acc:88.4%,Test_loss:0.401
Epoch: 8, Train_acc:90.0%, Train_loss:0.340, Test_acc:92.9%,Test_loss:0.488
Epoch: 9, Train_acc:90.7%, Train_loss:0.321, Test_acc:92.4%,Test_loss:0.260
Epoch:10, Train_acc:91.0%, Train_loss:0.316, Test_acc:92.9%,Test_loss:0.240
Epoch:11, Train_acc:92.6%, Train_loss:0.288, Test_acc:93.3%,Test_loss:0.254
Epoch:12, Train_acc:91.3%, Train_loss:0.291, Test_acc:92.4%,Test_loss:0.231
Epoch:13, Train_acc:93.9%, Train_loss:0.238, Test_acc:92.4%,Test_loss:0.226
Epoch:14, Train_acc:93.9%, Train_loss:0.255, Test_acc:93.3%,Test_loss:0.200
Epoch:15, Train_acc:93.7%, Train_loss:0.239, Test_acc:94.7%,Test_loss:0.236
Epoch:16, Train_acc:93.4%, Train_loss:0.224, Test_acc:93.3%,Test_loss:0.201
Epoch:17, Train_acc:94.1%, Train_loss:0.265, Test_acc:94.7%,Test_loss:0.187
Epoch:18, Train_acc:93.7%, Train_loss:0.222, Test_acc:94.2%,Test_loss:0.193
Epoch:19, Train_acc:95.4%, Train_loss:0.224, Test_acc:93.8%,Test_loss:0.199
Epoch:20, Train_acc:95.1%, Train_loss:0.201, Test_acc:93.3%,Test_loss:0.175
Done

四、 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/189523.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于新能源汽车的英语翻译

近年来&#xff0c;随着全球对环保和可持续发展的重视&#xff0c;新能源汽车已经成为汽车产业的重要发展方向。各国政府和企业都在加大投入&#xff0c;推动新能源汽车的技术研发和产业化发展&#xff0c;进而促进了新能源汽车翻译的需求不断提升 。那么&#xff0c;关于新能源…

6.docker运行mysql容器-理解容器数据卷

运行mysql容器-理解容器数据卷 1.什么是容器数据卷2.如何使用容器数据卷2.1 数据卷挂载命令2.2 容器数据卷的继承2.3 数据卷的读写权限2.4 容器数据卷的小实验&#xff08;加深理解&#xff09;2.4.1 启动挂载数据卷的centos容器2.4.2 启动后&#xff0c;在宿主机的data目录下会…

【如何学习Python自动化测试】—— 自动化测试环境搭建

1、 自动化测试环境搭建 1.1 为什么选择 Python 什么是python&#xff0c;引用python官方的说法就是“一种解释型的、面向对象、带有励志语义的高级程序设计语言”&#xff0c;对于很多测试人员来说&#xff0c;这段话包含了很多术语&#xff0c;而测试人员大多是希望利用编程…

postgresql:记录表膨胀引起的io问题的处理

文章目录 1. io异常2.查看profile报告2.1 生成事发时间段的pgprofile2.2 查看报告 3.检查table是否膨胀4.执行vacuum full5.总结 1. io异常 iostat -x 1 20 Device r/s w/s rkB/s wkB/s rrqm/s wrqm/s %rrqm %wrqm r_await w_await aqu-sz rareq…

RT-Thread STM32F407 PWM

为了展示PWM效果&#xff0c;这里用ADC来采集PWM输出通道的电平变化 第一步&#xff0c;进入RT-Thread Settings配置PWM驱动 第二步&#xff0c;进入board.h&#xff0c;打开PWM宏 第三步&#xff0c;进入STM32CubeMX&#xff0c;配置时钟及PWM 第四步&#xff0c;回到R…

asp.net健身会所管理系统sqlserver

asp.net健身会所管理系统sqlserver说明文档 运行前附加数据库.mdf&#xff08;或sql生成数据库&#xff09; 主要技术&#xff1a; 基于asp.net架构和sql server数据库 功能模块&#xff1a; 首页 会员注册 教练预约 系统公告 健身课程 在线办卡 用户中心[修改个人信息 修…

PyTorch - 高效快速配置 Conda + PyTorch 环境 (解决 segment fault )

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/134463035 在配置算法项目时&#xff0c;因网络下载速度的原因&#xff0c;导致默认的 conda 与 pytorch 包安装缓慢&#xff0c;需要配置新的 co…

MySQL数据库——存储过程-游标(介绍-声明游标、打开游标、获取游标记录、关闭游标,案例)

目录 介绍 声明游标 打开游标 获取游标记录 关闭游标 案例 介绍 游标&#xff08;CURSOR&#xff09;是用来存储查询结果集的数据类型 , 在存储过程和函数中可以使用游标对结果集进行循环的处理。 游标的使用包括游标的声明、OPEN、FETCH 和 CLOSE&#xff0c;其语法…

【开源】基于Vue和SpringBoot的民宿预定管理系统

项目编号&#xff1a; S 058 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S058&#xff0c;文末获取源码。} 项目编号&#xff1a;S058&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用例设计2.2 功能设计2.2.1 租客角色…

MySQL 运算符二

逻辑运算符 逻辑运算符用来判断表达式的真假。如果表达式是真&#xff0c;结果返回 1。如果表达式是假&#xff0c;结果返回 0。 运算符号作用NOT 或 !逻辑非AND逻辑与OR逻辑或XOR逻辑异或 1、与 mysql> select 2 and 0; --------- | 2 and 0 | --------- | 0 | -…

logistic回归后快速绘制亚组森林图!SCI发表级高清图片分分钟生成!

本周为大家重点介绍一下风暴统计平台的最新板块——亚组森林图&#xff01; 现在亚组分析好像越来越流行&#xff0c;无论是观察性研究还是RCT研究&#xff0c;亚组分析一般配备森林图。 比如这张图&#xff1a; 还有这个&#xff1a; 森林图不仅是画图的画法&#xff0c;背后还…

【计算思维】蓝桥杯STEMA 科技素养考试真题及解析 5

1、要把下面4张图片重新排列成蜗牛的画像&#xff0c;该如何排列这些图片 A、 B、 C、 D、 答案&#xff1a;A 2、将下图的绳子沿虚线剪开后&#xff0c;绳子被分成了()部分 A、6 B、7 C、8 D、9 答案&#xff1a;C 3、下面的立体图形&#xff0c;沿箭头方向看去&#…