分类预测 | Matlab实现基于PSO-SDAE粒子群优化算法优化堆叠去噪自编码器的数据分类预测

分类预测 | Matlab实现基于PSO-SDAE粒子群优化算法优化堆叠去噪自编码器的数据分类预测

目录

    • 分类预测 | Matlab实现基于PSO-SDAE粒子群优化算法优化堆叠去噪自编码器的数据分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现基于PSO-SDAE粒子群优化算法优化堆叠去噪自编码器的数据分类预测(完整源码和数据)
2.优化参数为:学习率,隐含层节点,迭代次数
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。
4.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图,运行环境matlab2018b及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
6.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据获取方式1:私信博主回复Matlab实现基于PSO-SDAE粒子群优化算法优化堆叠去噪自编码器的数据分类预测
  • 完整程序和数据获取方式2:资源处直接下载Matlab实现基于PSO-SDAE粒子群优化算法优化堆叠去噪自编码器的数据分类预测
%% 定义粒子群算法参数
% N 种群 T 迭代次数 
%% 随机初始化种群
D=dim;                   %粒子维数
c1=1.5;                 %学习因子1
c2=1.5;                 %学习因子2
w=0.8;                  %惯性权重Xmax=ub;                %位置最大值
Xmin=lb;               %位置最小值
Vmax=ub;                %速度最大值
Vmin=lb;               %速度最小值
%%
%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%x=rand(N,D).*(Xmax-Xmin)+Xmin;
v=rand(N,D).*(Vmax-Vmin)+Vmin;
%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%
p=x;
pbest=ones(N,1);
for i=1:Npbest(i)=fobj(x(i,:)); 
end
%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%
g=ones(1,D);
gbest=inf;
for i=1:Nif(pbest(i)<gbest)g=p(i,:);gbest=pbest(i);end
end
%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%
for i=1:Tifor j=1:N%%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%if (fobj(x(j,:))) <pbest(j)p(j,:)=x(j,:);pbest(j)=fobj(x(j,:)); 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/189704.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据可视化是什么?

大数据可视化是将海量数据通过视觉方式呈现出来&#xff0c;以便于人们理解和分析数据的过程。它可以帮人们发现数据之间的关系、趋势和模式&#xff0c;并制定更明智的决策。大数据可视化通常通过图形、图表、地图和仪表盘等视觉元素来呈现数据。这些元素具有直观、易理解的特…

常见的反爬+文字加解密

一、常见的反爬介绍 基于身份识别的反爬&#xff1a;1.User-agent 2.Referer 3.Captcha 验证码 4.必备参数 基于爬虫行为的反爬&#xff1a;1.单位时间内请求数量超过一定阈值 2.相邻两次请求之间间隔小于一定阈值3.蜜罐陷阱 通过对数据加密进行反爬&#xff1a;1.对文字加密…

CF1899A Game with Integers(思维题)

题目链接 题目 题目大意 t 组测试样例 每组给一个正整数 n&#xff0c; 有两种操作&#xff1a; 1-1 A 和 B 轮流操作&#xff0c; 如果这个整数变成了一个能被3整除的数&#xff0c;A赢&#xff0c;输出First 如果在10次操作以内&#xff0c;n不能被3整数&#xff0c;B赢&…

CF1899B 250 Thousand Tons of TNT

题目链接 题目 题目大意 T T T 组测试数据 每组 n n n 个货物&#xff0c;第 i i i 个货物 的重量是 a i a_i ai​ 用k辆货车按顺序装这些货物&#xff0c;条件是每辆车上的货物个数都一样&#xff0c;也即是说 n n n 必须能被 k k k 整除&#xff0c; 求任意两辆车货物总…

一起学docker系列之五docker的常用命令--操作容器的命令

目录 前言1 启动容器2 查看容器3 退出容器4 启动已经停止的容器5 重启容器6 停止容器7 删除已经停止的容器8 启动容器说明和举例9 查看容器日志10 查看容器内运行的进程11 查看容器内部细节12 进入正在运行的容器并进行交互13 导入和导出容器结语 前言 当涉及到容器化技术&…

如何在远程协同视频会议中确保安全性?

随着远程工作的普及&#xff0c;远程协同视频会议已成为企业和团队之间进行交流和协作的重要工具。与此同时&#xff0c;会议中的安全性问题也日益凸显。本文将介绍如何在远程协同视频会议中确保安全性&#xff0c;主要包括以下方面&#xff1a; 1、内网部署 将会议服务器部署…

python引入自己不同目录的模块

1.目录结构 from manual_data.utils import delete_and_insert_center

【Proteus仿真】【STM32单片机】公交车报站系统

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真STM32单片机控制器&#xff0c;使用LCD12864显示模块、DS18B20温度传感器、DS1302时钟模块、按键、LED蜂鸣器、ULN2003、28BYJ48步进电机模块等。 主要功能&#xff1a; 系统运行…

学习css过渡动画-transition

文章目录 前言transition属性语法宽度改变效果透明度改变效果位置改变效果如有启发&#xff0c;可点赞收藏哟~ 前言 通常&#xff0c;当一个元素的样式属性值发生变化时&#xff0c;会立即看到页面发生变化。 css属性transition能让页面元素不是立即的、而是慢慢的从一种状态变…

Python | 机器学习之SVM支持向量机

​&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《人工智能奇遇记》&#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 目录结构 1. 机器学习之SVM支持向量机概念 1.1 机器学习 1.2 SVM支持向量机 2. SVM支持向量机…

2024年山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题-B卷

2024年山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题-B卷 2024年山东省职业院校技能大赛中职组 “网络安全”赛项竞赛试题-B卷A模块基础设施设置/安全加固&#xff08;200分&#xff09;A-1&#xff1a;登录安全加固&#xff08;Windows, Linux&#xff09;A-2&#…

Go 语言数组基础教程 - 数组的声明、初始化和使用方法

数组用于在单个变量中存储相同类型的多个值&#xff0c;而不是为每个值声明单独的变量。 声明数组 在Go中&#xff0c;有两种声明数组的方式&#xff1a; 使用var关键字&#xff1a; 语法 var array_name [length]datatype{values} // 这里定义了长度 或者 var array_n…