“具有分布式能源资源的多个智能家庭的能源管理的联邦强化学习”文章学习四——基于联邦深度学习的多智能家居能源管理

 一、用于家庭能源管理的FRL算法

        在本节中,我们将阐述提出的FRL算法(算法1),该算法以分布式方式调度多个智能家庭的能量消耗。在提出的FRL框架中,LHEMS和GS相互迭代并有效训练LHEMS的模型。我们考虑了由LHEMS控制的空调、WM和ESS的三个DRL智能体。我们考虑的是在连续动作空间中由相应的智能体安排空调、WM和ESS的能量消耗的情况。为此,我们在每个智能体的学习过程中采用了A2C方法,该方法在第二节B部分中介绍过。假设所有智能体同时启动学习过程。每个智能体都从由神经网络(即演员网络)产生的均值和方差中选取其行动,并从由此产生的分布中采样随机行动。此外,智能体增加了神经网络,即批评家网络,以接收Q(st, at)并计算A(st, at)以提高模型性能。在完成本地训练过程后,每个智能体将其训练过的模型发送到GS。需要注意的是,智能体们共享他们自己的训练模型(例如神经网络的权重),但并不共享用于训练的私有数据。在将本地训练的模型传递到GS之后,它们被存储在GS中的一批数据中。GS利用存储在一批中的所有LHEMS的智能体训练模型生成全局模型。在本研究中,我们采用了FedSGD算法[15]以及自适应矩估计(ADAM)优化算法[26]来构建全局模型。最后,产生的全局模型同时分发给所有LHEMS中的智能体。智能体们同步重新启动使用给定的全局模型的学习过程。

        最后,在算法1中,多个智能家居的能源管理总体学习过程可以描述如下:

        首先,基于每个家庭环境的家电能源需求和不满参数被初始化(第1行)。

        第二,Q值Q(st, at)、优势A(st, at)、行动概率p(st, at)以及演员和评论家网络的权重θ被初始化(第2行)。

        第三,GS的全局模型ωG以及共享批次φ被初始化。它们被用于生成和广播最优全局模型给LHEMSs(第3行)。

        第四,对于每个通信回合和本地训练剧集,每个设备的智能体重复以下过程,从初始时间步(t = 1)找到其最优能源消耗计划直到最终时间步(t = 24)(第7-12行)。

        a)对于设备智能体的状态st,根据演员网络产生的均值和方差产生的分布,从样本行动中找出行动at(第8行)。

        b)计算上一步选择的行动at,从行动中获得奖励Rt,并用Q(st, at)和状态V(st)的值计算A(st, at),以更新演员网络(第9行)。

        c)估计TD目标值TDt,它是V(st)的目标估计,通过TD方法(第10行)。

        d)计算演员和评论家网络的损失函数,并使用ADAM优化器ϕ更新LHEMSn的模型ωn(第11,12行)。

        第五,每个LHEMSn发送其在每个本地训练剧集期间生成的本地方案模型ωnnew给GS, GS将其存储在φ中(第15行)。

        第六,GS通过使用存储在批次中的模型权重执行FedSGD来生成新的全局模型ωGnew(第17,18行)。

        第七,新生成的全局模型ωGnew被分配给所有的LHEMSs,它们根据ωGnew训练自己的本地模型(第19,20行)。

二、仿真设置

        我们考虑了四户家庭,他们有工作机械(WM)、空调(AC)和储能系统(ESS),规格各不相同,如表II所示。在图3(a)的TOU关税以及图3(b)的预测室外温度和图3(c)的光伏发电能量下,工作机械、空调和储能系统的操作由提出的HEMS控制24小时,1小时调度解析度。在每个家庭中,假定工作机械在一天内连续运行2小时。最初的、最低的和最大的SOE值分别设定为SOEmax的50%、10%和100%。工作机械和储能系统的不满意成本惩罚分别为(δ=80, δ=80)和(τ=150, τ=150)。提出的A2C模型包括一个带有256个神经元的公共主体网络的三个隐藏层,即每个演员和评论家网络带有128个神经元的单个隐藏层。提出的A2C方法体系结构如图4所示。使用双曲正切函数作为传递函数。此外,使用ADAM优化算法[26]训练基于深度学习的本地HEMS模型,学习率为0.00001。我们假设在本地HEMS的训练每100次迭代后,发生一次本地HEMS和全局HEMS服务器之间的通信。使用Python 3.7.0和ML包pytorch 1.1.0进行模拟研究。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/189735.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenAI临时CEO变更,Mira Murati接任,Sam Altman被辞退

2个小时前,OpenAI 官网宣布,首席技术官Mira Murati临时接任OpenAI CEO,并辞退了CEO Sam Altman。新闻里董事会对辞退的原因只有一个简单说明: “奥特曼离职之前,董事会进行了审慎审查,得出的结论是&#…

MySQL优化(1):B+树与索引

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 对于60%的程序员而言&a…

智能驾驶汽车虚拟仿真视频数据理解(一)

赛题官网 datawhale 赛题介绍 跑通demo paddle 跑通demo torch 提交的障碍物取最主要的那个?不考虑多物体提交。障碍物,尽可能选择状态发生变化的物体。如果没有明显变化的,则考虑周边的物体。车的状态最后趋于减速、停止,时序…

ESP32 MicroPython UART及小车类构造函数实验⑥

ESP32 MicroPython UART及小车类构造函数实验⑥ 1、实验目的2、实验内容3、参考代码4、实验结果 1、实验目的 控制小车动起来 2、实验内容 控制小车的前进、后退、左转、右转。读取小车 使用到的串口构造函数: uartmachine.UART(id,baudrate,rx,tx)uart:返回的构…

python django 小程序商城源码

开发环境: PyCharm,mysql5.7,微信开发者工具 技术说明: python django html vue.js bootstrap 微信小程序 功能介绍: 用户端: 登录注册(含授权登录) 首页显示搜索商品(可根据…

Elasticsearch:通过摄取管道加上嵌套向量对大型文档进行分块轻松地实现段落搜索

作者:VECTOR SEARCH 向量搜索是一种基于含义而不是精确或不精确的 token 匹配技术来搜索数据的强大方法。 然而,强大的向量搜索的文本嵌入模型只能按几个句子的顺序处理短文本段落,而不是可以处理任意大量文本的基于 BM25 的技术。 现在&…

《网络协议》08. 概念补充

title: 《网络协议》08. 概念补充 date: 2022-10-06 18:33:04 updated: 2023-11-17 10:35:52 categories: 学习记录:网络协议 excerpt: 代理、VPN、CDN、网络爬虫、无线网络、缓存、Cookie & Session、RESTful。 comments: false tags: top_image: /images/back…

机器视觉选型-什么时候用远心镜头

物体厚 当被检测物体厚度较大,需要检测不止一个平面时,典型应用如食品盒,饮料瓶等。 物体位置变化 当被测物体的摆放位置不确定,可能跟镜头成一定角度时。 物体上下跳动 当被测物体在被检测过程中上下跳动,如生产线上下…

一起学docker系列之四docker的常用命令--系统操作docker命令及镜像命令

目录 前言1 操作 Docker 的命令1.1 启动 Docker1.2 停止 Docker1.3 重启 Docker1.4 查看 Docker 状态1.5 查看 Docker 所有命令的信息1.6 查看某个命令的帮助信息 2 操作镜像的命令2.1 查看所有镜像2.2 搜索某个镜像2.3 下载某个镜像2.4 查看镜像所占空间2.5 删除镜像2.6 强制删…

ESP32 MicroPython LCD显示实验⑤

ESP32 MicroPython LCD显示实验⑤ 1、实验目的2、实验平台3、实验内容4、参考代码5、实验结果 1、实验目的 LCD显示屏显示中英文字符、显示图片 2、实验平台 智能小车(配备显示屏) 3、实验内容 小车配有2.0寸的TFT彩屏,内置有中文GBK字库,可以显示中…

C++初级项目-webserver(1)

1.引言 Web服务器是一个基于Linux的简单的服务器程序,其主要功能是接收HTTP请求并发送HTTP响应,从而使客户端能够访问网站上的内容。本项目旨在使用C语言,基于epoll模型实现一个简单的Web服务器。选择epoll模型是为了高效地处理大量并发连接…

数据库mysql详细教学

1024 byte 构成 1 kb 1024 KB > 1MB 1024 MB > 1GB 1024 GB > 1TB 1024 TB > 1PB 内存的数据,断电后会丢失。外存的数据,断电后数据还在~ “持久化” 这样的次,意思就是把数据写到硬盘上。 mysql的第一组基本操作:数…