[算法学习笔记](超全)概率与期望

引子

先来讲个故事······

话说在神奇的OI大陆上,有一只paper mouse

有一天,它去商场购物,正好是11.11,商店有活动

它很荣幸被选上给1832抽奖

在抽奖箱里,有3个蓝球,12个红球

paper mouse能抽3次

蒟蒻的paper mouse就疑惑了:抽到至少1个蓝球的概率是多少???

Answer:

总共有15个球

只抽到1个蓝球的概率是\frac{C_{3}^{1}*C_{12}^{2}}{C_{15}^{3}}\approx0.435165(很好理解吧,在4个蓝球里取一个,再在11个红球里面取3个,总共是在15个里面取4个)

抽到2个蓝球的概率是\frac{C_{3}^{2}*C_{12}^{1}}{C_{15}^{3}}\approx0.079121

抽到3个蓝球的概率是\frac{C_{3}^{3}*C_{12}^{0}}{C_{15}^{3}}\approx0.002198

所以总概率就是三者之和,即0.435165+0.079121+0.002198=0.516484\approx\frac{129}{250}

我们也可以反过来分析:如果paper mouse运气爆棚,一个蓝球都没有抽到

那么其对立事件就一定会有至少一个蓝球

所以概率就是:1-\frac{C_{12}^{3}}{C_{15}^{3}}\approx1-0.483516=0.516484\approx\frac{129}{250}

也就是说,paper mouse有接近\frac{1}{2}的概率给心爱的1832送上礼物······

概率

概率就是随机事件出现的可能性大小

For example,上面的故事里就涉及到概率

若某种事件重复了N次,其中A事件出现了M次,出现A事件的概率就是\frac{M}{N}

同时,0\leq \frac{M}{N}\leq 1,用P()表示

即:P(A)=\frac{M}{N}

1.1 条件概率与全概率

条件概率公式:

如果事件A发生的概率为P(A),事件B单独发生的概率为P(b)

若B必须在A发生之后发生,则B发生的概率就是条件概率,P(B)=P(A|b)=\frac{P(AB)}{P(b)}

(是不是还比较好理解?真正shit的才刚刚开始)

全概率公式:

如果事件 B1, B2,⋯, Bn 构成一个完整的样本空间,且两两互斥,P(Bi) > 0。 则对于任意事件 A 有:P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i),这就是全概率公式

思想就是:P(A)不是很好求,但是把P(A)拆开计算P(A|Bi)P(Bi)就相对好算一些

举个例子:

paper mouse去表白1832了
他每次写情书,1832都有0.5的概率看见
而第一次看见,1832有0.2的概率同意他
第二次看见时,1832有0.5的概率同意他
第三次看见时,1832一定会同意他的请求 

求paper mouse获得1832爱情的概率

通过全概率公式:

事件A是paper mouse陷入爱河

事件集合B是:B={B_0,B_1,B_2,B_3},B_i表示paper mouse表白了i次

P(A)=P(AB_0)+P(AB_1)+P(AB_2)+P(AB_3)

            = P(A|B_0)P(B_0) + P(A|B_1)P(B_1) + P(A|B_2)P(B_2)+ P(A|B_3)P(B_3)

            =0+C_{3}^{1}*0.5^{3}*0.2+C_{3}^{2}*0.5^{3}*0.5+C_{3}^{3}*0.5^{3}*1

            =0.3875

所以paper mouse表白成功的概率高达0.3!(喜)

期望

炸裂的东西来了

先看看期望的定义

1.1 期望定义

如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随 机变量称为离散型随机变量。

离散型随机变量的一切可能的取值 Xi 与对应的概率 P(Xi) 乘积之和称为该离散型随机变量的数学期望,记为 E(X) ,简称期望。

怎么样?是不是蛮有意思的?

换一种通俗但不精确的方式阐述一下(涉及下定义内容,非xxs请谨慎观看):

期望就是    某件事发生的概率集合中的每一个数    对其对应值的乘积    的和

一个普通骰子,众所周知有六面,对应1~6

每一面转到的概率就是 \frac{1}{6},所以:

E(X)=\frac{1}{6}*1+\frac{1}{6}*2+\frac{1}{6}*3+\frac{1}{6}*4+\frac{1}{6}*5+\frac{1}{6}*6

            =\frac{1}{6}*(1+2+3+4+5+6)

            =3.5

所以也可以这么说:

数学期望可以理解为某件事情大量发生之后的平均结果。

来个难点的:

设一张彩票为 2 元,每售 100000 张开奖,假每张彩票有一个对应的六位数号码,奖次如下:

  • 安慰奖:奖励 4 元,中奖概率0.1
  • 幸运奖:奖励 20 元,中奖概率 0.01
  • 手气奖:奖励 200 元,中奖概率 0.001
  • 一等奖:奖励 2000 元,中奖概率 0.0001
  • 特等奖:奖励 20000 元,中奖概率 0.00001

那公司到底是亏还是赚呢?

我们来简单计算一下,对于每一位购买彩票的用户,公司可能支出为: 

0.14+0.01*20+0.001*200+0.0001*2000+0.00001*20000=1.2

所以公司期望赚0.8元

1.2 期望的线性性质

设 X, Y 是任意两个随机变量,则有

  • E(X + Y ) = E(X) + E(Y )
  • E(aX + bY ) = aE(X) + bE(Y ) 

证明略

再举个栗子:

同时仍一颗骰子的期望为3.5

同时扔两颗骰子的概率是3.5+3.5=7

1.3 条件期望与全期望公式

一个经典xxs的题:

A班平均分为x分,B班平均分为y分

求A、B两个班的平均分

显而易见的:A、B班的平均分不能直接(x+y)/2

而是:(x*a+ y*b)/(x+y),其中a表示A班人数,b表示B班人数

期望也差不多。

友好的看一下全期望公式:

设 X 是一个离散型随机变量, 当 X = xi 时,随机变量 Y 可能包含多种情况 y1, y2,⋯, yk,随机变量 Y 的条件 数学期望为:

E(Y|X=x_i)=\sum ^{k}_{j=1}y_j × P(Y = y_j |X = x_i)

对于随机变量 X 有很多取值 x1, x2,⋯, xa,Y 有很多取值 y1, y2,⋯, yb。

全期望公式:

E(Y)=E(E(Y|X))

            =\sum ^{a}_{i=1}P(X = x_i)E(Y|X = x_i)

            = \sum^{a}_{i=1}P(X=x_i)\sum^{b}_{j=1}y_j*P(Y=y_j|X=x_i)

            =\sum^{a}_{i=1}\sum^{b}_{j=1}y_j*P(X=xi)*P(Y= y_i|X=x_i)

            =\sum^{a}_{i=1}\sum^{b}_{j=1}y_j×P(X=x_i,Y=y_j)

            =E(Y)

例如,一项工作由甲一个人完成,平均需要 4 小时,而乙有 0.4 的概率来帮忙,两个人完成平均只需要 3 小时。

若用 X 表示完成这项工作的人数,而 Y 表示完成的这项工作的期望时间(单位小时)

由于这项工作要么由一 个人完成, 要么由两个人完成,那么这项工作完成的期望时间

E(Y)=P(X=1)*E(Y|X=1)+P(X=2)*E(Y|X=2)=(1-0.4)*4-0.4*3=3.6​​​​​​​

(例题下次更新)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/190068.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于LeNet实现手写体数字识别实验

目录 1 数据 1.1 数据预处理 2 模型构建 2.1 自定义算子实现 2.2 Pytorch框架实现 2.3 测试两个网络的运算速度 2.4 两个网络加载同样的权重,两个网络的输出结果是否一致? 2.5 计算模型的参数量和计算量。 3 模型训练 4 模型评价 5 模型预测 总结…

网络工程师沦为IT行业里的“二等公民”了?

大家好,我是老杨。 都说网工难,都说网工苦,都说网工行业已经不行了、网工成为最底层、“二等公民”,已经彻底没落了…… 这些在互联网里持续不断散发出来的负能量,有没有让你在深夜耍手机的时候一次又一次的扎心过&a…

【C++】——阶段性测验(帮助巩固C++前半部分知识)

🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL&#xff1a…

数据库学习 02-01 关系数据模型详细学习(数据库模式中的一种)

关系型数据模型的相关概念介绍: 01.关系(Relation) 一个关系对应通常说的一张表 02.元组(Tuple) 表中的一行即为一个元组,也就是一个对象 03.属性(Attribute) 表中的一列即为一个属性…

2023年AI生成音频研究报告

第一章 行业概况 1.1 定义 AI音频生成行业,作为人工智能生成内容(AIGC)技术渗透的关键领域,正迅速成为技术革新的前沿阵地。这一领域专注于运用先进的人工智能技术和复杂算法来创造音频内容,覆盖了语音合成、音乐制作…

Pytorch torch.dot、torch.mv、torch.mm、torch.norm的用法详解

torch.dot的用法: 使用numpy求点积,对于二维的且一个二维的维数为1 torch.mv的用法: torch.mm的用法 torch.norm 名词解释:L2范数也就是向量的模,L1范数就是各个元素的绝对值之和例如:

业务架构、技术架构、项目管理的有机结合

新入职的创业公司一年不行了。 这一年来没有上班,也因为大龄的问题找不到合适的工作。然后考了几个项目管理证书,又思考了一个技术兑现的问题。 技术本身是架构的执行层面,如果上面的公司战略、业务架构变小,缩水,或者…

11.5MyBatis(进阶)

一.${}和#{} 1.$是直接替换,#是预处理(使用占位符,替换成?).前者不安全(SQL注入), 后者安全. 2.$的使用场景: 如果传递的值是sql的关键字,只能使用$,不能使用#(asc,desc). 二.SQL注入 注意: 如果使用${}进行传参,一定要是可以穷举的,并且要进行安全性验证(例如排序,只能传a…

【无标题】函数参数列表

torch.nn.Conv2d 参数详解 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride1, padding0, dilation1, groups1, biasTrue) 来源博客 view函数,和reshape函数? reshape函数的本质我觉的就是view函数contiguous函数 反正reshape功能多…

数字音频工作站FL Studio21.1中文版本如何下载?

在现在这个数字音乐时代,各种音乐中都或多或少有些电子音乐的影子,或是合成器音色、或是通过数字效果器制作出的变幻莫测的变化效果。而小马丁、Brooks、Eliminate等众多电子音乐巨头便是使用FL Studio来制作音乐的。今天小编就以FL Studio五年的资深用户…

【数据结构(二)】队列(2)

文章目录 1. 队列的应用场景和介绍1.1. 队列的一个使用场景1.2. 队列介绍 2. 数组模拟队列2.1. 思路分析2.2. 代码实现 3. 数组模拟环形队列3.1. 思路分析3.2. 代码实现 1. 队列的应用场景和介绍 1.1. 队列的一个使用场景 银行排队的案例: 1.2. 队列介绍 队列是一…

基于单片机温湿度PM2.5报警系统

**单片机设计介绍, 基于单片机温湿度PM2.5报警设置系统 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 单片机温湿度PM2.5报警设置系统是一种智能化的环境检测与报警系统。它主要由单片机、传感器、液晶显示屏、蜂鸣器…