生成式AI模型量化简明教程

在不断发展的人工智能领域,生成式AI无疑已成为创新的基石。 这些先进的模型,无论是用于创作艺术、生成文本还是增强医学成像,都以产生非常逼真和创造性的输出而闻名。 然而,生成式AI的力量是有代价的—模型大小和计算要求。 随着生成式AI模型的复杂性和规模不断增长,它们需要更多的计算资源和存储空间。 这可能是一个重大障碍,特别是在边缘设备或资源受限的环境上部署这些模型时。 这就是具有模型量化功能的生成式 AI 发挥作用的地方,它提供了一种在不牺牲质量的情况下缩小这些庞大模型的方法。

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 

1、模型量化简介

简而言之,模型量化(Model Quantization)会降低模型参数数值的精度。 在深度学习模型中,神经网络通常采用高精度浮点值(例如 32 位或 64 位)来表示权重和激活。 模型量化将这些值转换为较低精度的表示形式(例如 8 位整数),同时保留模型的功能。

模型量化在生成式AI中的好处包括:

  • 减少内存占用:模型量化最明显的好处是内存使用量的显着减少。 较小的模型尺寸使得在边缘设备、移动应用程序和内存容量有限的环境中部署生成式AI变得可行。
  • 更快的推理:由于数据大小减少,量化模型运行速度更快。 这种速度的提高对于视频处理、自然语言理解或自动驾驶汽车等实时应用至关重要。
  • 能源效率:缩小模型大小有助于提高能源效率,使得在电池供电设备或在能源消耗令人担忧的环境中运行生成式AI模型变得可行。
  • 降低成本:较小的模型占用空间会降低存储和带宽要求,从而为开发人员和最终用户节省成本。

尽管有其优势,生成式AI中的模型量化也面临着一些挑战:

  • 量化感知训练:准备量化模型通常需要重新训练。 量化感知训练旨在最大限度地减少量化过程中模型质量的损失。
  • 最佳精度选择:选择正确的量化精度至关重要。 精度太低可能会导致显着的质量损失,而精度太高可能无法充分减小模型大小。
  • 微调和校准:量化后,模型可能需要微调和校准以保持其性能并确保它们在新的精度约束下有效运行。

一些生成式AI模型量化的应用示例如下:

  • 设备上的艺术生成:通过量化缩小生成式 AI 模型,艺术家可以创建设备上的艺术生成工具,使它们更易于访问和便携地进行创意工作。
  • 边缘设备上的医疗保健成像:可以部署量化模型以进行实时医学图像增强,从而实现更快、更高效的诊断。
  • 移动终端文本生成:移动应用程序可以提供文本生成服务,减少延迟和资源使用,从而增强用户体验。

2、生成式AI模型量化的代码优化

将模型量化纳入生成式 AI 可以通过 TensorFlow 和 PyTorch 等流行的深度学习框架来实现。 TensorFlow Lite 的量化感知训练(quantization-aware training)和 PyTorch 的动态量化(dynamic quantization)等工具和技术提供了在项目中实现量化的简单方法。

2.1 TensorFlow Lite 量化

TensorFlow 提供了用于模型量化的工具包,特别适合设备上部署。 以下代码片段演示了使用 TensorFlow Lite 量化 TensorFlow 模型:

import tensorflow as tf# Load your saved model
converter = tf.lite.TFLiteConverter.from_saved_model("your_model_directory") 
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()
open("quantized_model.tflite", "wb").write(tflite_model)

在此代码中,我们首先导入 TensorFlow 库, `tf.lite.TFLiteConverter `用于从模型目录加载保存的模型,将优化设置为 tf.lite.Optimize.DEFAULT 以启用默认量化,最后,我们转换模型并将其保存为量化的 TensorFlow Lite 模型。

2.2 PyTorch 动态量化

PyTorch 提供动态量化,允许你在推理过程中量化模型。 下面是 PyTorch 动态量化的代码片段:

import torch
from torch.quantization import quantize_dynamic
model = YourPyTorchModel()
model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
quantized_model = quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)

在此代码中,我们首先导入必要的库,然后通过 YourPyTorchModel()创建PyTorch 模型,将量化配置 (qconfig) 设置为适合模型的默认配置,最后使用 quantize_dynamic 来量化模型,得到量化模型 quantized_model。

3、比较数据:量化模型 vs. 非量化模型

内存占用:

  • 非量化:3.2 GB 内存。
  • 量化:模型大小减少 65%,内存使用量为 1.1 GB。 内存消耗减少了 66%。

推理速度和效率:

  • 非量化:每次推理 38 毫秒,消耗 3.5 焦耳。
  • 量化:每次推理速度加快 22 毫秒(提高 42%),能耗降低 2.2 焦耳(节能 37%)。

输出质量:

  • 非量化:视觉质量(1-10 分值为 8.7)、文本连贯性(1-10 分值为 9.2)。
  • 量化:视觉质量略有下降(7.9,下降 9%),同时保持文本连贯性(9.1,下降 1%)。

推理速度与模型质量:

  • 非量化:25 FPS,质量得分 (Q1) 为 8.7。
  • 量化:以 38 FPS 进行更快的推理(提高 52%),质量得分(第二季度)为 7.9(降低 9%)。

比较数据强调了量化的资源效率优势以及现实应用中输出质量的权衡。

4、生成式AI模型量化的最佳实践

虽然模型量化为在资源有限的环境中部署生成式 AI 模型提供了多种好处,但遵循最佳实践以确保量化工作取得成功至关重要。 以下是一些关键建议:

  • 量化感知训练:从量化感知训练开始,这是一个微调模型以降低精度的过程。 这有助于最大限度地减少量化期间模型质量的损失。 在精度降低和模型性能之间保持平衡至关重要。
  • 精度选择:仔细选择正确的量化精度。 评估模型尺寸减小和潜在质量损失之间的权衡。 你可能需要尝试不同的精度级别才能找到最佳折衷方案。
  • 校准:量化后,进行校准,以确保量化模型在新的精度约束下有效运行。 校准有助于调整模型的行为以与所需的输出保持一致。
  • 测试和验证:彻底测试和验证你的量化模型。 这包括评估其在现实世界数据上的性能、测量推理速度以及将生成的输出的质量与原始模型进行比较。
  • 监控和微调:持续监控量化模型在生产中的性能。 如有必要,可以对模型进行微调,以随着时间的推移保持或提高其质量。 这个迭代过程确保量化模型保持有效。
  • 文档和版本控制:记录量化过程并保留模型版本、校准数据和性能指标的详细记录。 该文档有助于跟踪量化模型的演变,并在出现问题时简化调试。
  • 优化推理管道:关注整个推理管道,而不仅仅是模型本身。 优化输入预处理、后处理和其他组件,以最大限度地提高整个系统的效率。

5、结束语

在生成式AI领域,模型量化是应对模型大小、内存消耗和计算需求挑战的强大解决方案。 通过降低数值精度,同时保持模型质量,量化使生成式 AI 模型能够将其覆盖范围扩展到资源受限的环境。 随着研究人员和开发人员不断微调量化过程,我们预计生成式AI将部署在从移动设备到边缘计算等更加多样化和创新的应用程序中。 在此过程中,关键是在模型大小和模型质量之间找到适当的平衡,释放生成式AI的真正潜力。


原文链接:生成式AI模型量化 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/190198.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基础模型的自然语言处理能力综述

NLP作为一个领域为基础模型开辟了道路。虽然这些模型在标准基准测试中占据主导地位,但这些模型目前获得的能力与那些将语言描述为人类交流和思维的复杂系统的能力之间存在明显的差距。针对这一点,我们强调语言变异的全部范围(例如&#xff0c…

H5ke11--1登录界面一直保存--用本地localStorage存储

目录 代码详解 localStage优点 :一直保存着 注意事项: storage属性们 代码详解 ke8学校陈老师H5-CSDN博客文章浏览阅读76次。实现H5中新增的三个元素:forEach的使用方法。https://blog.csdn.net/m0_72735063/article/details/134019012即此之后 当然可以分为按…

记一次用jlink调试正常,不进入调试就不能运行的情况

一、概述 我开机会闪烁所有指示灯,但是重新上电时,指示灯并没有闪烁,就像"卡死"了一样。 使用jlink的swd接口进行调试,需要多点几次运行才能跳转到main函数里面。 调试模式第一次点击运行,暂停查看函数堆栈…

Flask学习一:概述

搭建项目 安装框架 pip install Flask第一个程序 from flask import Flaskapp Flask(__name__)app.route(/) def hello_world():return "Hello World"if __name__ __main__:app.run()怎么说呢,感觉还不错的样子。 调试模式 if __name__ __main__:a…

Vue.js2+Cesium1.103.0 十四、绘制视锥,并可实时调整视锥姿态

Vue.js2Cesium1.103.0 十四、绘制视锥&#xff0c;并可实时调整视锥姿态 Demo <template><divid"cesium-container"style"width: 100%; height: 100%;"><divclass"control"style"position: absolute;right: 50px;top: 50px…

第十九章 绘图

目录 Java绘图类 Graphics 类 Graphics2D类 绘制图形 绘图颜色与画笔属性 设置颜色 设置画笔 绘制文本 设置字体 显示文字 显示图片 图像处理 放大与缩小 图像翻转 图像旋转 图像倾斜 Java绘图类 Graphics 类 Grapics 类是所有图形上…

MidJourney笔记(2)-面板使用

MidJourney界面介绍 接着上面的疑问。U1、U2、U3、U4、V1、V2、V3、V4分别代表着什么? U1、U2、U3、U4: U按钮是用于放大图片,数字即表示对应的图片,可以立即生成1024X1024像素大小的图片。这样大家在使用的时候,也方便单独下载。 其中数字顺序如下:

2023-11-18 Android Linux资源限制命令 ulimit,比如ulimit -d 是设置进程占用的最大数据段大小,默认是unlimited。

一、通过ulimit -a 命令可以查看当前的各种资源限制&#xff0c;比如ulimit -d 是 进程占用的最大数据段大小。 # ulimit -a -t: time(cpu-seconds) unlimited -f: file(blocks) unlimited -c: coredump(blocks) 0 -d: data(KiB) unlimited -s:…

屏蔽bing搜索框的今日热点

中国版的Bing简直比百度还恶心了&#xff0c;“今日热点”要是在搜索设置里关闭了就没法提供搜索建议了&#xff0c;不关吧看着又烦人&#xff0c;就像下图这样。另外还有右上角的下载bing app和Rewards图标也闲着没啥用&#xff0c;Rewards图标还老有小红点&#xff0c;真受不…

【giszz笔记】产品设计标准流程【5】

&#xff08;续上回&#xff09; 目录 五、原型设计 1.写在前面的话 2.原型是什么 3.画原型的工具 4.产品经理的复合能力 5.关于原型图 PS&#xff1a;这个系列&#xff0c;主要讨论的是产品设计的一般标准流程。这个流程也许每天都发生在我们的身边&#xff0c;我们也常…

C/C++ 运用VMI接口查询系统信息

Windows Management Instrumentation&#xff08;WMI&#xff09;是一种用于管理和监视Windows操作系统的框架。它为开发人员、系统管理员和自动化工具提供了一种标准的接口&#xff0c;通过这个接口&#xff0c;可以获取有关计算机系统硬件、操作系统和应用程序的信息&#xf…

若依中脱敏

SpringBoot使用自定义注解实现返回数据脱敏操作 在实际项目中&#xff0c;对于敏感数据的保护十分重要&#xff0c;数据脱敏又称数据去隐私化或数据变形&#xff0c;是在给定的规则、策略下对敏感数据进行变换、修改的技术机制&#xff0c;能够在很大程度上解决敏感数据在非可…