Redis分布式问题

Redis实现分布式锁

  Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系Redis中可以使用SETNX命令实现分布式锁。当且仅当 key 不存在,将 key 的值设为 value。 若给定的 key 已经存在,则SETNX 不做任何动作SETNX 是『SET if Not eXists』(如果不存在,则 SET)的简写。

返回值:设置成功,返回1。设置失败,返回0。
在这里插入图片描述
  使用SETNX完成同步锁的流程及事项如下(img):使用SETNX命令获取锁,若返回0(key已存在,锁已存在)则获取失败,反之获取成功为了防止获取锁后程序出现异常,导致其他线程/进程调用SETNX命令总是返回0而进入死锁状态,需要为该key设置一个“合理”的过期时间释放锁,使用DEL命令将锁数据删除。

如何解决 Redis 的并发竞争 Key 问题

  所谓 Redis 的并发竞争 Key 的问题也就是多个系统同时对一个 key 进行操作,但是 后执行的顺序和我们期望的顺序不同,这样也就导致了结果的不同!

推荐一种方案:
  分布式锁(zookeeper 和 redis 都可以实现分布式锁)。(如果不存在 Redis 的并发竞争 Key 问题,不要使用分布式锁,这样会影响性能)基于zookeeper临时有序节点可以实现的分布式锁。大致思想为:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号 小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。完成业务流程后,删除对应的子节点释放锁。
在实践中,当然是从以可靠性为主。所以首推Zookeeper。

分布式Redis是前期做还是后期规模上来了再做好?为什么?

  既然Redis是如此的轻量(单实例只使用1M内存),为防止以后的扩容, 好的办法就是一开始就启动较多实例。即便你只有一台服务器,你也可以一开始就让Redis以分布式的方式运行,使用分区,在同一台服务器上启动多个实例。
  一开始就多设置几个Redis实例,例如32或者64个实例,对大多数用户来说这操作起来可能比较麻烦,但是从长久来看做这点牺牲是值得的。
  这样的话,当你的数据不断增长,需要更多的Redis服务器时,你需要做的就是仅仅将Redis实例从一台服务迁移到另外一台服务器而已(而不用考虑重新分区的问题)。一旦你添加了另一台服务器,你需要将你一半的Redis实例从第一台机器迁移到第二台机器。

什么是 RedLock

  Redis 官方站提出了一种权威的基于 Redis 实现分布式锁的方式名叫Redlock,此种方式比原先的单节点的方法更安全。它可以保证以下特性:
   1. 安全特性:互斥访问,即永远只有一个 client 能拿到锁
   2. 避免死锁: 终 client 都可能拿到锁,不会出现死锁的情况,即使原本锁住某资源的 client crash 了或者出现了网络分区
   3. 容错性:只要大部分 Redis 节点存活就可以正常提供服务缓存异常缓存雪崩
  缓存雪崩是指缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。
解决方案

  1. 缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
  2. 一般并发量不是特别多的时候,使用多的解决方案是加锁排队。
  3. 给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓存。

缓存穿透

  缓存穿透是指缓存和数据库中都没有的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。
解决方案
  1. 接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截;
  2. 从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击。
  3. 采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的 bitmap 中,一个一定不存在的数据会被这个 bitmap 拦截掉,从而避免了对底层存储系统的查询压力附加对于空间的利用到达了一种极致,那就是Bitmap和布隆过滤器(Bloom Filter)。
Bitmap: 典型的就是哈希表缺点是,Bitmap对于每个元素只能记录1bit信息,如果还想完成额外的功能,恐怕只能靠牺牲更多的空间、时间来完成了。

布隆过滤器(推荐)
就是引入了k(k>1)k(k>1)个相互独立的哈希函数,保证在给定的空间、误判率下,完成元素判重的过程。
它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
Bloom-Filter算法的核心思想就是利用多个不同的Hash函数来解决“冲突”。
Hash存在一个冲突(碰撞)的问题,用同一个Hash得到的两个URL的值有可能相同。为了减少冲突,我们可以多引入几个Hash,如果通过其中的一个Hash值我们得出某元素不在集合中,那么该元素肯定不在集合中。只有在所有的Hash函数告诉我们该元素在集合中时,才能确定该元素存在于集合中。这便是Bloom-Filter的基本思想。
Bloom-Filter一般用于在大数据量的集合中判定某元素是否存在。

缓存击穿

  缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。和缓存雪崩不同的是,缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。
解决方案
1.设置热点数据永远不过期。
2.加互斥锁,互斥锁缓存预热

缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!
解决方案

  1. 直接写个缓存刷新页面,上线时手工操作一下;
  2. 数据量不大,可以在项目启动的时候自动进行加载;
  3. 定时刷新缓存;

缓存降级

  当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。
缓存降级的 终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。
在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:

  1. 一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
  2. 警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
  3. 错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的 大阀值,此时可以根据情况自动降级或者人工降级;
  4. 严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。

服务降级的目的,是为了防止Redis服务故障,导致数据库跟着一起发生雪崩问题。因此,对于不重要的缓存数据,可以采取服务降级策略,例如一个比较常见的做法就是Redis出现问题,不去数据库查询,而是直接返回默认值给用户。

热点数据和冷数据

  热点数据,缓存才有价值对于冷数据而言,大部分数据可能还没有再次访问到就已经被挤出内存,不仅占用内存,而且价值不大。频繁修改的数据,看情况考虑使用缓存对于热点数据,比如我们的某IM产品,生日祝福模块,当天的寿星列表,缓存以后可能读取数十万次。再举个例子,某导航产品,我们将导航信息,缓存以后可能读取数百万次。
  数据更新前至少读取两次,缓存才有意义。这个是 基本的策略,如果缓存还没有起作用就失效了,那就没有太大价值了。那存不存在,修改频率很高,但是又不得不考虑缓存的场景呢?有!比如,这个读取接口对数据库的压力很大,但是又是热点数据,这个时候就需要考虑通过缓存手段,减少数据库的压力,比如我们的某助手产品的,点赞数,收藏数,分享。
  数等是非常典型的热点数据,但是又不断变化,此时就需要将数据同步保存到Redis缓存,减少数据库压力。

缓存热点key

  缓存中的一个Key(比如一个促销商品),在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
  解决方案对缓存查询加锁,如果KEY不存在,就加锁,然后查DB入缓存,然后解锁;其他进程如果发现有锁就等待,然后等解锁后返回数据或者进入DB查询常用工具。

Redis支持的Java客户端都有哪些?官方推荐用哪个?
  Redisson、Jedis、lettuce等等,官方推荐使用Redisson。

Redis和Redisson有什么关系?
  Redisson是一个高级的分布式协调Redis客服端,能帮助用户在分布式环境中轻松实现一些Java的对象 (Bloom filter, BitSet, Set, SetMultimap,ScoredSortedSet, SortedSet, Map, ConcurrentMap, List, ListMultimap,Queue, BlockingQueue, Deque, BlockingDeque, Semaphore, Lock,ReadWriteLock, AtomicLong, CountDownLatch, Publish / Subscribe,HyperLogLog)。

Jedis与Redisson对比有什么优缺点?
Jedis是Redis的Java实现的客户端,其API提供了比较全面的Redis命令的支持;Redisson实现了分布式和可扩展的Java数据结构,和Jedis相比,功能较为简单,不支持字符串操作,不支持排序、事务、管道、分区等Redis特性。Redisson的宗旨是促进使用者对Redis的关注分离,从而让使用者能够将精力更集中地放在处理业务逻辑上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/1912.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

『赠书活动 | 第十三期』《算力经济:从超级计算到云计算》

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; 『赠书活动 &#xff5c; 第十三期』 本期书籍&#xff1a;《算力经济&#xff1a;从超级计算到云计算》 赠书规则&#xff1a;评论区&#xff1a;点赞&#xff5c;收…

全志V3S嵌入式驱动开发(开发环境再升级)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们陆陆续续开发了差不多有10个驱动&#xff0c;涉及到网口、串口、音频和视频等几个方面。但是整个开发的效率还是比较低的。每次开发调试的…

Matlab论文插图绘制模板第105期—带缺口的分组填充箱线图

在之前的文章中&#xff0c;分享了Matlab带缺口的分组箱线图的绘制模板&#xff1a; 进一步&#xff0c;再来分享一下带缺口的分组填充箱线图的绘制模板。 先来看一下成品效果&#xff1a; 特别提示&#xff1a;本期内容『数据代码』已上传资源群中&#xff0c;加群的朋友请自…

筹码分布图高级用法——历史换手衰减系数自动计算公式

在使用筹码分布图时&#xff0c;很多人习惯于采用软件的默认设置&#xff0c;然而默认设置不一定能满足我们的要求。今天将向大家介绍筹码分布图的高级用法——历史换手衰减系数&#xff0c;并编写历史换手衰减系数自动计算公式。有些网友认为通过修改衰减系数&#xff0c;可以…

【C++实现二叉树的遍历】

目录 一、二叉树的结构二、二叉树的遍历方式三、源码 一、二叉树的结构 二、二叉树的遍历方式 先序遍历&#xff1a; 根–>左–>右中序遍历&#xff1a; 左–>根–>右后序遍历&#xff1a;左–>右–>根层次遍历&#xff1a;顶层–>底层 三、源码 注&am…

记事本软件误删后如何找回?

随着智能手机的普及&#xff0c;各种优秀的手机软件层出不穷&#xff0c;成为我们生活和工作中的得力助手。其中&#xff0c;记事本软件在手机上的应用也越来越受欢迎。 一款记事本可以给用户带来许多便利和帮助。与传统的纸质记事本相比&#xff0c;手机记事本具有更多的功能…

mac ppt设置起始页码

今天发现我的ppt的左边ppt的缩略图的开始页码是从2开始的&#xff0c;觉得很奇怪&#xff0c;这个解决的办法就是 点击ppt->文件->页面设置->页眉和页脚->幻灯片编号

SQL注入攻击与防护

目录 一、SQL注入攻击概述 1.1 SQL注入概念 1.1.1 标准查询过程 1.1.2 SQL注入定义 1.2 SQL注入根本原因 1.3 SQL注入条件 1.4 SQL注入防范 1.4.1 根本原因&#xff1a;过滤不严 1.4.2 安全设计原则&#xff1a;数据与代码分离 1.5 SQL注入流程 1.6 SQL注入分类 1.…

时序预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)时间序列预测

时序预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)时间序列预测 目录 时序预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)时间序列预测预测效果基本介绍模型介绍PSO模型LSTM模型PSO-LSTM模型 程序设计参考资料致谢 预测效果 基本介绍 Matlab基于PSO-LST…

Java日志框架介绍

​今天来聊一聊 Java 日志框架&#xff0c;不管是在项目开发阶段的调试&#xff0c;还是项目上线后的运行&#xff0c;都离不开日志。日志具有处理历史数据、定位程序问题、理解程序运行过程等重要作用。在 Spring 项目开发过程中我们常见的日志框架可能就是 logback、log4j2 和…

数据库的操作

前言 在之前的文章中&#xff0c;我们已经了解了什么是数据库&#xff0c;以及为什么有数据库&#xff0c;和数据库有什么作用&#xff0c;有了这些宏观概念之后&#xff0c;本章为大家进一步详细介绍对于数据库在Linux上如何具体操作。 1.创建数据库 1.1创建数据库语法 语法…

MyBatis-Plus:条件构造器Wrapper

目录 1.Wrapper概述 1.1.Wrapper的继承关系 1.2.Wapper介绍 1.3.各个构造器使用区别 1.4.构造器常用方法 2.Wrapper常用构造器介绍 2.1.QueryWrapper 2.2.UpdateWrapper 2.3.LambdaQueryWrapper 2.4.AbstractWrapper 3. Lambda条件构造器 3.1.示例 4.鸣谢 MyBati…