深入理解ResNet网络:实现与应用

Resnet

在深度学习领域,卷积神经网络(CNN)是一种非常重要的模型,它在图像识别、目标检测等领域取得了显著的成果。然而,随着网络层数的增加,梯度消失和梯度爆炸问题变得越来越严重,导致训练深层网络变得非常困难。为了解决这个问题,研究人员提出了残差网络(ResNet),通过引入残差模块,使得深度网络的训练变得更加容易。本文将详细介绍ResNet网络的原理、实现以及应用。
我的pytorch代码实现:Resnet
Resnet

ResNet网络原理

  • 残差模块
    ResNet的核心思想是引入残差模块(Residual Block),每个残差模块包含两个或多个卷积层。残差模块的输入和输出之间存在一个恒等映射关系,即:
    F(x) = H(x) + x
    其中,F(x)表示残差模块的输出,H(x)表示卷积层的输出,x表示输入。这种恒等映射关系使得深层网络的训练变得更加容易。
  • 跳跃连接
    为了进一步解决梯度消失和梯度爆炸问题,ResNet采用了跳跃连接(Skip Connection)的方式。跳跃连接是指将前面若干层的输出直接连接到后面的层,这样可以帮助梯度更快地传播到更深的层次。
  • 深度可分离卷积
    为了减少计算量和参数数量,ResNet采用了深度可分离卷积(Depthwise Separable Convolution)。深度可分离卷积将标准的卷积分解为逐深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution),从而降低了计算复杂度。

ResNet网络实现

  • 定义残差模块(Residual Block)
class ResidualBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1):super(ResidualBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)self.shortcut = nn.Sequential()if stride != 1 or in_channels != out_channels:self.shortcut = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels))def forward(self, x):out = self.relu(self.bn1(self.conv1(x)))out = self.bn2(self.conv2(out))out += self.shortcut(x)out = self.relu(out)return out
  • 定义ResNet网络结构
class ResNet(nn.Module):def __init__(self, block, num_blocks, num_classes=1000):super(ResNet, self).__init__()self.in_channels = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(512 * block.expansion, num_classes)def _make_layer(self, block, out_channels, num_blocks, stride):strides = [stride] + [1] * (num_blocks - 1)layers = []for stride in strides:layers.append(block(self.in_channels, out_channels, stride))self.in_channels = out_channels * block.expansionreturn nn.Sequential(*layers)def forward(self, x):out = self.relu(self.bn1(self.conv1(x)))out = self.maxpool(out)out = self.layer1(out)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = self.avgpool(out)out = torch.flatten(out, 1)out = self.fc(out)return out

ResNet网络应用

ResNet网络在许多计算机视觉任务中都取得了优异的性能,例如图像分类、物体检测和语义分割等。
我们在vgg16神经网络上训练了SIGNS数据集,这是一个分类的数据集,在我的github上有介绍怎么下载数据集以及如何训练。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/191219.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI智剪:批量剪辑实战,技巧与实例

随着人工智能技术的不断发展,越来越多的领域开始应用AI技术提升工作效率和质量。其中,AI智剪技术在视频剪辑领域的应用也越来越广泛。AI智剪是一种基于人工智能技术的视频剪辑方法,通过机器学习算法对视频进行自动分析和处理,实现…

【2023春李宏毅机器学习】生成式学习的两种策略

文章目录 1 各个击破2 一步到位3 两种策略的对比 生成式学习的两种策略:各个击破、一步到位 对于文本生成:把每一个生成的元素称为token,中文当中token指的是字,英文中的token指的是word piece。比如对于unbreakable,他…

Linux CentOS7 添加网卡

一台主机中安装多块网卡,有许多优势。可以实现多项功能。 为了学习网卡参数的设置,可以为主机添加多块网卡。与添加磁盘一样,要在VMware中设置。利用图形化方式或命令行查看或设置网卡。本文仅作一初步讨论。有关网络参数的设置不在讨论之列…

2023年【四川省安全员A证】考试资料及四川省安全员A证考试试卷

题库来源:安全生产模拟考试一点通公众号小程序 2023年四川省安全员A证考试资料为正在备考四川省安全员A证操作证的学员准备的理论考试专题,每个月更新的四川省安全员A证考试试卷祝您顺利通过四川省安全员A证考试。 1、【多选题】《建设工程安全生产管理…

让你的Mac体验更便捷,快速启动工具Application Wizard为你助力!

亲爱的Mac用户们,你是否经常感到在繁琐的软件启动过程中浪费了太多时间?你是否希望能够以更快的速度找到并启动你所需的应用程序?如果是的话,那么不要犹豫,让我们来介绍一款强大的软件快速启动工具——Application Wiz…

循环队列(出队、入队、判空、长度、遍历、取头)(数据结构与算法)

循环队列 涉及到移动、赋值原队列参数的函数参数列表如front,rear,都最好别用&引用,否则会修改原队列中的地址和数值如:SqQueue &Q 使用SqQueue Q作参数列表时,函数引入的只是一份副本,不会修改原队…

【GUI】-- 09 JComboBox JList、JTextField JPasswordField JTextArea

GUI编程 03 Swing 3.6 列表 下拉框 package com.duo.lesson06;import javax.swing.*; import java.awt.*;public class ComboBoxDemo01 extends JFrame {public ComboBoxDemo01() throws HeadlessException {Container contentPane getContentPane();JComboBox<Object&…

腾讯云轻量级服务器和云服务器什么区别?轻量服务器是干什么用的

随着互联网的迅速发展&#xff0c;服务器成为了许多人必备的工具。然而&#xff0c;面对众多的服务器选择&#xff0c;我们常常会陷入纠结之中。在这篇文章中&#xff0c;我们将探讨轻量服务器和标准云服务器的区别&#xff0c;帮助您选择最适合自己需求的服务器。 腾讯云双十…

竞赛 题目:基于深度学习的中文对话问答机器人

文章目录 0 简介1 项目架构2 项目的主要过程2.1 数据清洗、预处理2.2 分桶2.3 训练 3 项目的整体结构4 重要的API4.1 LSTM cells部分&#xff1a;4.2 损失函数&#xff1a;4.3 搭建seq2seq框架&#xff1a;4.4 测试部分&#xff1a;4.5 评价NLP测试效果&#xff1a;4.6 梯度截断…

IO流-框架

一&#xff0c;框架概念 二&#xff0c;Commons-io框架 三&#xff0c;使用案例 package BigDecimal;import org.apache.commons.io.FileUtils;import java.io.File; import java.io.IOException;public class Main12 {public static void main(String[] args) throws IOExcept…

UE 程序化网格 计算横截面

首先在构造函数内加上程序化网格&#xff0c;然后复制网格体到程序化网格组件上&#xff0c;将Static Mesh&#xff08;类型StaticMeshActor&#xff09;的静态网格体组件给到程序化网格体上 然后把StaticMesh&#xff08;类型为StaticMeshActor&#xff09;Instance暴漏出去 …

Flask 接口

目录 前言 代码实现 简单接口实现 执行其它程序接口 携带参数访问接口 前言 有时候会想着开个一个接口来访问试试&#xff0c;这里就给出一个基础接口代码示例 代码实现 导入Flask模块&#xff0c;没安装Flask 模块需要进行 安装&#xff1a;pip install flask 使用镜…