python中sklearn库在数据预处理中的详细用法,及5个常用的Scikit-learn(通常简称为 sklearn)程序代码示例

在这里插入图片描述

文章目录

  • 前言
  • 1. 数据清洗:使用 sklearn.preprocessing 中的 StandardScaler 和 MinMaxScaler 进行数据规范化。
  • 2. 缺失值处理:使用 sklearn.impute 中的 SimpleImputer 来填充缺失值。
  • 3. 数据编码:使用 sklearn.preprocessing 中的 OneHotEncoder 进行独热编码。
  • 4. 数据拆分:使用 sklearn.model_selection 中的 train_test_split 将数据集拆分为训练集和测试集。
  • 总结


前言

Scikit-learn(通常简称为 sklearn)是一个在 Python 中广泛使用的开源机器学习库,它包含了许多用于预处理数据的工具。

sklearn是针对Python编程语言的免费软件机器学习库,它是scikit-learn的简称,是一个基于Python的第三方模块。sklearn库集成了一些常用的机器学习方法,在进行机器学习任务时,并不需要实现算法,只需要简单的调用sklearn库中提供的模块就能完成大多数的机器学习任务。

sklearn库是在Numpy、Scipy和matplotlib的基础上开发而成的,因此在介绍sklearn的安装前,需要先安装这些依赖库。

下面是一些在数据预处理中常用的 sklearn 功能和相应的代码示例


Scikit-learn(通常简称为 sklearn)是一个在 Python 中广泛使用的开源机器学习库,它包含了许多用于预处理数据的工具。下面是一些在数据预处理中常用的 sklearn 功能和相应的代码示例。

1. 数据清洗:使用 sklearn.preprocessing 中的 StandardScaler 和 MinMaxScaler 进行数据规范化。

from sklearn.preprocessing import StandardScaler, MinMaxScaler  #  示例数据  
data = [[0, 0], [0, 0], [1, 1], [1, 1]]  # 使用 StandardScaler 进行标准化  
scaler = StandardScaler()  
scaled_data = scaler.fit_transform(data)  
print(scaled_data)  # 使用 MinMaxScaler 进行规范化  
scaler = MinMaxScaler()  
scaled_data = scaler.fit_transform(data)  
print(scaled_data)

2. 缺失值处理:使用 sklearn.impute 中的 SimpleImputer 来填充缺失值。

from sklearn.impute import SimpleImputer  
import numpy as np  # 示例数据,其中第二列包含缺失值(NaN)  
data = [[0, np.nan], [0, 0], [1, 1], [1, 1]]  # 使用 SimpleImputer 填充缺失值(默认为平均值)  
imputer = SimpleImputer(strategy='mean')  
imputed_data = imputer.fit_transform(data)  
print(imputed_data)

3. 数据编码:使用 sklearn.preprocessing 中的 OneHotEncoder 进行独热编码。

from sklearn.preprocessing import OneHotEncoder  
import numpy as np  # 示例数据,其中第二列是类别标签(整数)  
data = [[0, 0], [0, 1], [1, 0], [1, 1]]  # 使用 OneHotEncoder 进行独热编码  
encoder = OneHotEncoder(sparse=False)  
encoded_data = encoder.fit_transform(data)  
print(encoded_data)

4. 数据拆分:使用 sklearn.model_selection 中的 train_test_split 将数据集拆分为训练集和测试集。

from sklearn.model_selection import train_test_split  
import numpy as np  # 示例数据,用于训练模型(预测房价)  
data = [[0, 0], [0, 1], [1, 0], [1, 1]]  # X = features, y = target (house price)  
y = np.array([0, 1, 1, 0])  # target labels (0 = low price, 1 = high price)  
X = data[:, 0:2]  # features (first two columns of data)  # 使用 train_test_split 将数据集拆分为训练集和测试集(比例为 80% 和 20%)  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
print('Training data:', X_train)  # training features (X_train) and labels (y_train)  
print('Testing data:', X_test)  # testing features (X_test) and labels (y_test) for model evaluation and prediction on unseen data (real-world scenario)

总结

Scikit-learn和sklearn其实是同一个机器学习库的不同叫法,两者没有本质的区别。Scikit-learn是Scikit和Learn两个单词的组合,而sklearn是scikit-learn的简称,它包含各种无监督和监督学习技术,例如分类、回归、聚类等。

Scikit-learn是Python中非常流行的机器学习库,它提供了许多实用的模块和工具,例如分类器、预处理器、聚类算法等,可以大大简化机器学习任务的开发过程。Scikit-learn基于NumPy、SciPy和matplotlib等库,具有简单易用的特点,同时社区支持也很丰富。

总之,Scikit-learn和sklearn是同一个机器学习库的不同叫法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/191359.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot集成JDBC

1&#xff0c;pom.xml配置jar包 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-jdbc</artifactId> </dependency> 2&#xff0c;配置数据源信息 server:port: 8088spring:datasource:dr…

人类智能的精髓超出了统计概率

处理不确定性好坏的程度是衡量各种智能系统高低的一个重要指标。在处理不确定性时&#xff0c;智能系统需要具备推理、学习和决策的能力&#xff0c;通常使用概率和统计等方法来建模和处理不确定性&#xff0c;以便更好地应对现实世界中的复杂问题。统计概率是基于大量观察和数…

Leetcode—剑指Offer LCR 140.训练计划II【简单】

2023每日刷题&#xff08;三十三&#xff09; Leetcode—LCR 140.训练计划II 实现代码 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct ListNode *next;* };*/ struct ListNode* trainingPlan(struct ListNode* head, int cnt) {str…

python自动化标注工具+自定义目标P图替换+深度学习大模型(代码+教程+告别手动标注)

省流建议 本文针对以下需求&#xff1a; 想自动化标注一些目标不再想使用yolo想在目标检测/语意分割有所建树计算机视觉项目想玩一玩大模型了解自动化工具了解最前沿模型自定义目标P图替换… 确定好需求&#xff0c;那么我们发车&#xff01; 实现功能与结果 该模型将首先…

web服务器练习---配置nginx三种虚拟主机

在做实验之前&#xff0c;大家先安装nginx服务&#xff0c;有两种安装方法&#xff1a; 1、rpm包安装&#xff08;安装过程简单&#xff0c;适用于学习阶段&#xff0c;方便测试&#xff09; 2、源码安装&#xff08;安装过程较为复杂&#xff0c;适用于生产环境&#xff09;…

IOS object-c大屏图表 PNChart 折线图 曲线图

折线图是排列在工作表的列或行中的数据可以绘制到折线图中。折线图可以显示随时间&#xff08;根据常用比例设置&#xff09;而变化的连续数据&#xff0c;因此非常适用于显示在相等时间间隔下数据的趋势。在折线图中&#xff0c;类别数据沿水平轴均匀分布&#xff0c;所有值数…

kernel32.dll下载地址分享,Kernel32.DLL文件丢失的修复指南

作为计算机用户&#xff0c;我们可能都曾遭遇过这样一条令人烦恼的错误信息&#xff1a; "程序无法启动&#xff0c;因为您的计算机中缺少Kernel32.dll"。在这种情况下&#xff0c;往往会引发一系列疑问&#xff1a; Kernel32.dll是什么&#xff1f;为什么它对我的电…

100套Axure RP大数据可视化大屏模板及通用组件库

106套Axure RP大数据可视化大屏模板包括了多种实用美观的可视化组件库及行业模板库&#xff0c;行业模板涵盖&#xff1a;金融、教育、医疗、政府、交通、制造等多个行业提供设计参考。 随着大数据的发展&#xff0c;可视化大屏在各行各业得到越来越广泛的应用。可视化大屏不再…

OpenCV快速入门:图像滤波与边缘检测

文章目录 前言一、噪声种类与生成1.1 椒盐噪声1.2 高斯噪声1.3 彩色噪声 二、卷积操作2.1 卷积基本原理2.2 卷积操作代码实现 三、线性滤波3.1 均值滤波均值滤波原理均值滤波公式均值滤波代码实现 3.2 方框滤波方框滤波原理方框滤波公式方框滤波代码实现 3.3 高斯滤波高斯滤波原…

【总结】坐标变换和过渡矩阵(易忘记)

xCy&#xff0c;此为x到y的坐标变换。 [β1,β2,…,βn] [α1,α2,…αn]C&#xff0c;此为基α到基β的过渡矩阵。 这个概念经常忘记。。。alpha到beta看来就是alpha后面加一个过渡矩阵了&#xff0c;很直观。坐标变换就是根据过渡矩阵和基本形式推一推得到吧&#xff0c;记…

VMware Workstation Pro 12 ubuntu 20.04 突然奔溃,重新打开后导致win11系统蓝屏问题

1、虚拟机在执行一个程序时候&#xff0c;突然导致系统win11蓝屏 2、重新打开提示磁盘打开异常&#xff0c;网络搜索发现要删除磁盘lock文件&#xff0c;删除后&#xff0c;重启过程中还是会报各种异常 后来把所有的临时文件都删除了&#xff0c;就可以了 临时文件&#xff1…

HUAWEI华为笔记本MateBook X 2021款i5集显(EULD-WFH9,WXX9)原装出厂Windows11系统工厂模式包

下载链接&#xff1a;https://pan.baidu.com/s/1gQ_O203SSm83Nc-zDk1iNA?pwd4exz 提取码&#xff1a;4exz 系统带F10一键智能还原功能隐藏恢复分区、所有驱动、Office办公软件、华为电脑管家等预装程序 所需要工具&#xff1a;32G或以上的U盘 文件格式&#xff1a;zip …