动手学深度学习——循环神经网络的从零开始实现(原理解释+代码详解)

文章目录

    • 循环神经网络的从零开始实现
      • 1. 独热编码
      • 2. 初始化模型参数
      • 3. 循环神经网络模型
      • 4. 预测
      • 5. 梯度裁剪
      • 6. 训练

循环神经网络的从零开始实现

从头开始基于循环神经网络实现字符级语言模型。

# 读取数据集
%matplotlib inline
import math
import torchfrom torch import nn
from torch.nn import functional as F
from d2l import torch as d2lbatch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

1. 独热编码

每个词元都有一个对应的索引,表示为特征向量,即每个索引映射为相互不同的单位向量。

词元表不同词元个数为N,词元索引范围为0到N-1。词元的索引为整数,那么将创建一个长度为N的全0向量,并将第i处元素设置为1。则此向量是原始词元的一个独热编码。

假如有2个词元"cat"和"dog"

  • "cat"对应:[1, 0]
  • "dog"对应:[0, 1]

索引为0和2的独热向量

# 索引为0和2的独热向量
F.one_hot(torch.tensor([0, 2]), len(vocab))

在这里插入图片描述
采样的小批量数据形状为二维张量:(批量大小,时间步数),one_hot函数将其转换为三维张量:(时间步数,批量大小,词表大小)

# 采样的小批量数据形状为二维张量:(批量大小,时间步数)
# one_hot函数将其转换为三维张量:(时间步数,批量大小,词表大小)
# 方便我们通过最外层维度,一步一步更新小批量数据的隐状态
X = torch.arange(10).reshape((2, 5))
print(F.one_hot(X.T, 28).shape)
# 显示第一行
F.one_hot(X.T, 28)[0,:,:]

在这里插入图片描述

2. 初始化模型参数

隐藏单元数num_hiddens是一个可调的超参数

训练语言模型时,输入和输出来自相同的词表,具有相同的维度即词表大小

"""
初始化模型参数:1、隐藏层参数2、输出层参数3、附加梯度
"""
# (词表大小,隐藏层数,设备)
def get_params(vocab_size, num_hiddens, device):num_inputs = num_outputs = vocab_size# 定义函数normal(),初始化模型的参数def normal(shape):return torch.randn(size=shape, device=device) * 0.01# 隐藏层参数W_xh = normal((num_inputs, num_hiddens))W_hh = normal((num_hiddens, num_hiddens))b_h = torch.zeros(num_hiddens, device=device)# 输出层参数W_hq = normal((num_hiddens, num_outputs))b_q = torch.zeros(num_outputs, device=device)# 附加梯度params = [W_xh, W_hh, b_h, W_hq, b_q]for param in params:param.requires_grad_(True)return params

3. 循环神经网络模型

定义init_rnn_state函数在初始化时返回隐状态,该函数的返回是一个张量,张量全用0填充,形状为(批量大小,隐藏单元数)。

# 定义init_rnn_state函数在初始化时返回隐状态
# 该函数的返回是一个张量,张量全用0填充,形状为(批量大小,隐藏单元数)
def init_rnn_state(batch_size, num_hiddens, device):return (torch.zeros((batch_size, num_hiddens), device=device), )

在这里插入图片描述
循环神经网络通过最外层的维度实现循环,以便时间步更新小批量数据的隐状态H

# 循环神经网络通过最外层的维度实现循环,以便时间步更新小批量数据的隐状态H
def rnn(inputs, state, params):# inputs的形状:(时间步数量,批量大小,词表大小)W_xh, W_hh, b_h, W_hq, b_q = paramsH, = stateoutputs = []# X的形状:(批量大小,词表大小)for X in inputs:# 激活函数tanh,更新隐状态HH = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)Y = torch.mm(H, W_hq) + b_qoutputs.append(Y)return torch.cat(outputs, dim=0), (H,)

创建一个类来包装这些函数, 并存储从零开始实现的循环神经网络模型的参数

"""
从零开始实现的循环神经网络模型:
1、定义网络模型的参数
2、对词表进行独热编码
3、初始化模型参数并返回隐状态
"""
class RNNModelScratch: #@save"""从零开始实现的循环神经网络模型"""# 定义类的初始化,将传入的参数赋值给对象的属性,以便后续使用def __init__(self, vocab_size, num_hiddens, device,get_params, init_state, forward_fn):self.vocab_size, self.num_hiddens = vocab_size, num_hiddensself.params = get_params(vocab_size, num_hiddens, device)self.init_state, self.forward_fn = init_state, forward_fndef __call__(self, X, state):# 对输入进行独热编码,返回状态及参数X = F.one_hot(X.T, self.vocab_size).type(torch.float32)return self.forward_fn(X, state, self.params)def begin_state(self, batch_size, device):# 初始化参数return self.init_state(batch_size, self.num_hiddens, device)

检查输出是否具有正确的形状。 例如,隐状态的维数是否保持不变。

num_hiddens = 512
# 网络模型
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,init_rnn_state, rnn)
# 获得网络初始状态
state = net.begin_state(X.shape[0], d2l.try_gpu())
# 将X移到GPU上,并且返回输出Y和状态
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape

在这里插入图片描述
可以看到输出形状是(时间步数x批量大小,词表大小), 而隐状态形状保持不变,即(批量大小,隐藏单元数)。

4. 预测

定义预测函数

"""
定义预测函数:
1、prefix是用户提供的字符串;
2、循环遍历prefix的开始字符时不输出,不断将隐状态传递给下一个时间步;
3、在此期间模型进行自我更新(隐状态),不进行预测;
4、2和3步骤称为预热期,预热期过后隐状态的值更适合预测,从而预测字符并输出。
"""
# prefix:前缀字符串
def predict_ch8(prefix, num_preds, net, vocab, device):  #@save"""在prefix后面生成新字符"""state = net.begin_state(batch_size=1, device=device)outputs = [vocab[prefix[0]]]# 匿名函数:改变输出的形状get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))# 预热期:不进行输出for y in prefix[1:]:  # 预热期_, state = net(get_input(), state)outputs.append(vocab[y])# 预热期过了之后,进行预测for _ in range(num_preds):  # 预测num_preds步y, state = net(get_input(), state)outputs.append(int(y.argmax(dim=1).reshape(1)))return ''.join([vocab.idx_to_token[i] for i in outputs])

测试predict_ch8函数。 我们将前缀指定为time traveller, 并基于这个前缀生成10个后续字符

# 测试predict_ch8函数。 我们将前缀指定为time traveller, 并基于这个前缀生成10个后续字符。
# 未训练模型,输出预测结果没有联系
predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())

在这里插入图片描述

5. 梯度裁剪

为什么要梯度裁剪:
1、对于长度为T的序列,我们在迭代中计算T个时间步上的梯度,在反向传播过程中产生长度为T的矩阵乘法链;
2、T较大时,会导致数值不稳定,例如梯度消失或者梯度爆炸。

一个流行的替代方案是通过将梯度g投影回给定半径 (例如θ)的球来裁剪梯度g。
在这里插入图片描述

def grad_clipping(net, theta):  #@save"""裁剪梯度"""if isinstance(net, nn.Module):# 附加梯度的参数params = [p for p in net.parameters() if p.requires_grad]else:# 梯度的范数:对应图里作为分母的"||g||"params = net.paramsnorm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))# 如果梯度过大,将其限制到θif norm > theta:for param in params:param.grad[:] *= theta / norm

6. 训练

在一个迭代周期内训练模型:
1、序列数据的不同采样方法(随机采样和顺序分区)将导致状态初始化的差异;
2、在更新模型参数之前裁剪梯度,这样可以保证训练过程中如果某点发生梯度爆炸,模型也不会发散;
3、用困惑度评价模型,使得不同长度的序列也有了可比性。

  • 顺序分区:只在每个迭代周期的开始位置初始化隐状态。
  • 随机抽样:每个样本都是在一个随机位置抽样的,因此需要在每个迭代周期重新初始化隐状态。
#@save
"""
训练网络一个迭代周期:
1、初始化状态,将数据传到GPU上
2、计算损失,进行梯度裁剪并更新模型参数
"""
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):"""训练网络一个迭代周期(定义见第8章)"""# 状态,时间state, timer = None, d2l.Timer()metric = d2l.Accumulator(2)  # 训练损失之和,词元数量for X, Y in train_iter:if state is None or use_random_iter:# 在第一次迭代或使用随机抽样时初始化statestate = net.begin_state(batch_size=X.shape[0], device=device)else:if isinstance(net, nn.Module) and not isinstance(state, tuple):# state对于nn.GRU是个张量# detach_()将张量从计算图中分离出来,不会影响到原始张量state.detach_()else:# state对于nn.LSTM或对于我们从零开始实现的模型是个张量for s in state:s.detach_()# 将Y 进行转置并展平成一维向量y = Y.T.reshape(-1)# 将X,y移动到设备上,并且输入到模型中X, y = X.to(device), y.to(device)y_hat, state = net(X, state)l = loss(y_hat, y.long()).mean()# 如果更新器 updater 是 torch.optim.Optimizer 类型,则调用 updater.step() 方法进行参数更新;# 否则调用 updater(batch_size=1) 进行参数更新。if isinstance(updater, torch.optim.Optimizer):updater.zero_grad() # 梯度置零l.backward() # 反向传播,知道如何调整参数以最小化损失函数grad_clipping(net, 1) # 梯度裁剪updater.step() # 使用优化器来更新参数else:l.backward()grad_clipping(net, 1)# 因为已经调用了mean函数updater(batch_size=1)# y.numel()计算y中元素数量metric.add(l * y.numel(), y.numel())# 使用指数损失函数计算累积平均困惑度 math.exp(metric[0] / metric[1]) 和训练速度 metric[1] / timer.stop()。return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()
  • updater.zero_grad(): 这一行代码将模型参数的梯度置零,以便在每次迭代中计算新的梯度。
  • l.backward(): 这一行代码使用反向传播算法计算损失函数对模型参数的梯度。通过计算梯度,我们可以知道如何调整模型参数以最小化损失函数。
  • grad_clipping(net, 1): 这一行代码对模型的梯度进行裁剪,以防止梯度爆炸的问题。梯度爆炸可能会导致训练不稳定,裁剪梯度可以限制梯度的范围。
  • updater.step(): 这一行代码使用优化器(如SGD、Adam等)来更新模型的参数。优化器根据计算得到的梯度和预定义的学习率来更新模型参数,以使模型更好地拟合训练数据。

循环神经网络的训练函数也支持高级API实现

# 循环神经网络的训练函数也支持高级API实现
#@save
def train_ch8(net, train_iter, vocab, lr, num_epochs, device,use_random_iter=False):"""训练模型(定义见第8章)"""loss = nn.CrossEntropyLoss()# 动画窗口:窗口显示一个图例,图例名称为 "train",x 轴的范围从 10 到 num_epochsanimator = d2l.Animator(xlabel='epoch', ylabel='perplexity',legend=['train'], xlim=[10, num_epochs])# 初始化if isinstance(net, nn.Module):updater = torch.optim.SGD(net.parameters(), lr)else:updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)# 训练和预测for epoch in range(num_epochs):ppl, speed = train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter)# 每10个epoch,对输入字符串进行预测,并将预测结果添加到动画中if (epoch + 1) % 10 == 0:print(predict('time traveller'))animator.add(epoch + 1, [ppl])print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')print(predict('time traveller'))print(predict('traveller'))

在数据集中只使用了10000个词元, 所以模型需要更多的迭代周期来更好地收敛

# 在数据集中只使用了10000个词元, 所以模型需要更多的迭代周期来更好地收敛
num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())

在这里插入图片描述
检查一下随机抽样方法的结果

# 检查一下随机抽样方法的结果
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(),use_random_iter=True)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/192644.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

某60区块链安全之重入漏洞实战记录

区块链安全 文章目录 区块链安全重入漏洞实战实验目的实验环境实验工具实验原理实验内容 重入漏洞实战 实验目的 学会使用python3的web3模块 学会以太坊重入漏洞分析及利用 实验环境 Ubuntu18.04操作机 实验工具 python3 实验原理 以太坊智能合约的特点之一是能够调用和…

进程概述

文章目录 计算机算机组成因特尔CPU型号摩尔定律衡量CPU的指标指令(Instruction)操作系统(Operating System)虚拟地址空间(Virtual Address Space)进程(Process/task)进程管理(PCB - 进程控制块)进程控制块(…

2023亚太杯数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…

UE 调整材质UV贴图长宽比例

首先,为什么要先减去0.5呢,因为缩放的贴图中心在0,0原点,以这个点缩放效果是这样: 它缩放的图案不会在正中间,因为是以0,0点进行缩放的 以这个图的箭头去缩放图片的,所以不能使得缩放后的图片放在正中心 那…

开源WIFI继电器之方案介绍

一、实物 1、外观 2、电路板 二、功能说明 输出一路继电器常开信号,最大负载电流10A输入一路开关量检测联网方式2.4G Wi-Fi通信协议MQTT配网方式AIrkiss,SmartConfig设备管理本地Web后台管理,可配置MQTT参数供电AC220V其它一个功能按键&…

java并发编程之基础与原理2

cpu缓存结构剖析 下面说一下概念与作用 CPU缓存即高速缓冲存储器,是位于CPU与主内存间的一种容量较小但速度很高的存储 器。由于CPU的速度远高于主内存,CPU直接从内存中存取数据要等待一定时间周期,Cache中 保存着CPU刚用过或循环使用的一部…

二维码智慧门牌管理系统升级解决方案:高效运营,信息尽在掌握

文章目录 前言一、升级要点二、方案优势三、应用场景四、客户案例 前言 在这个日新月异的时代,二维码智慧门牌管理系统已经成为了各行各业的标配。为了更好地满足用户需求,提升运营效率,我们推出了全新的升级解决方案。这个方案将让你轻松掌…

【DevOps】Git 图文详解(四):Git 使用入门

Git 图文详解(四):Git 使用入门 1.创建仓库2.暂存区 add3.提交 commit 记录4.Git 的 “指针” 引用5.提交的唯一标识 id,HEAD~n 是什么意思?6.比较 diff 1.创建仓库 创建本地仓库的方法有两种: 一种是创建…

nodejs微信小程序-慢性胃炎健康管理系统的设计与实现-安卓-python-PHP-计算机毕业设计

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…

爱上C语言:操作符详解(下)

🚀 作者:阿辉不一般 🚀 你说呢:生活本来沉闷,但跑起来就有风 🚀 专栏:爱上C语言 🚀作图工具:draw.io(免费开源的作图网站) 如果觉得文章对你有帮助的话,还请…

【漏洞复现】泛微e-Weaver SQL注入

漏洞描述 泛微e-Weaver(FANWEI e-Weaver)是一款广泛应用于企业数字化转型领域的集成协同管理平台。作为中国知名的企业级软件解决方案提供商,泛微软件(广州)股份有限公司开发和推广了e-Weaver平台。 泛微e-Weaver旨在…

CAS源码工程搭建记录

CAS源码工程搭建 1.下载2.gradle下载源改为阿里云,解决下载慢的问题3.解决保存 1.下载 git clone -b 5.3.x https://gitee.com/mirrors/CAS.git如果下载的是压缩包,导入工程会保存,因为builder.gradle的第20行开始有取git信息,如…

wangEditor富文本编辑器使用

一、官网 开源 Web 富文本编辑器&#xff0c;开箱即用&#xff0c;配置简单 二、下载安装 npm install --save wangeditor/editor-for-vue 三、在vue中使用 3.1、抽离组件editor.vue 在工程的components目录下新建组件editor <template><div><Toolbar:edi…

【漏洞复现】通达oa 前台sql注入

漏洞描述 通达OA(Office Automation)是一款企业级协同办公软件,旨在为企业提供高效、便捷、安全、可控的办公环境。它涵盖了企业日常办公所需的各项功能,包括人事管理、财务管理、采购管理、销售管理、库存管理、生产管理、办公自动化等。通达OA支持PC端和移动端使用,可以…

C_12练习题

一、单项选择题(本大题共20小题,每小题2分&#xff0c;共40分。在每小题给出的四个备选项中&#xff0c;选出一个正确的答案&#xff0c;并将所选项前的字母填写在答题纸的相应位置上。) C 风格的注释&#xff0c;也称块注释或多行注释&#xff0c;以&#xff08;&#xff09;…

比亚迪刀片电池与特斯拉4680电池比较

1 电池材料 比亚迪刀片电池采用的磷酸铁锂LFP&#xff08;LiFePO4&#xff09;&#xff0c;特斯拉的4680电池采用的三元锂。 磷酸铁锂&#xff1a;循环寿命长&#xff0c;安全性能好&#xff0c;价格低廉&#xff0c;但是能量密度低&#xff0c;导电性能差&#xff0c;低温表现…

软件开发、网络空间安全、人工智能三个方向的就业和前景怎么样?哪个方向更值得学习?

软件开发、网络空间安全、人工智能这三个方向都是当前及未来的热门领域&#xff0c;每个领域都有各自的就业前景和价值&#xff0c;以下是对这三个方向的分析&#xff1a; 1、软件开发&#xff1a; 就业前景&#xff1a;随着信息化的加速&#xff0c;软件开发的需求日益增长。…

STM32外部中断(EXTI)与RTOS多任务处理的协同设计

当在STM32上使用外部中断&#xff08;EXTI&#xff09;与RTOS&#xff08;Real-Time Operating System&#xff0c;实时操作系统&#xff09;进行多任务处理时&#xff0c;需要设计合适的协同机制&#xff0c;以确保可靠的中断处理和任务调度。在下面的概述中&#xff0c;我将介…

window系统vscode 编译wvp前端代码

下载代码 wvp-GB28181-pro: WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台&#xff0c;负责实现核心信令与设备管理后台部分&#xff0c;支持NAT穿透&#xff0c;支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联&#xff0c;支持rtsp/rtmp等…