(Matalb时序预测)PSO-BP粒子群算法优化BP神经网络的多维时序回归预测

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

 二、实际运行效果:

 三、部分程序:

 四、完整程序+数据+说明文档下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matalb平台编译,将PSO(粒子群算法)与BP神经网络结合,进行数据时序回归预测

  • 输入训练的数据包含8个特征,1个响应值,即通过8个输入值预测1个输出值(多变量时序预测)

  • 归一化训练数据,提升网络泛化性

  • 通过PSO算法优化BP神经网络的初始权重、初始偏差等参数,记录下最优的网络参数

  • 训练BP网络进行回归预测,将优化前后的网络预测效果进行对比,突出优化的重要性

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

 二、实际运行效果:

 三、部分程序:

clc;
clear;
warning off;
%% 导入数据
Data = table2array(readtable("数据集.xlsx"));
% 本例数据集中包含:
% 1. 总共472个样本(每一行表示一个样本)
% 2. 每个样本8个特征值(即前8列每一列表示样本的一个特征,即输入的变量)
% 3. 每个样本1个响应值(第9列为表示样本的响应值,即被预测的变量)%% 划分训练集和测试集
InPut_num = 1:1:8; % 输入特征个数,数据表格中前8列为输入值,因此设置为1:1:8,若前5个为输入则设置为1:1:5
OutPut_num = 9; % 输出响应个数,本例仅一个响应值,为数据表格中第9个,若多个响应值参照上行数据格式设置为x:1:y% 选取前376个样本作为训练集,后96个样本作为测试集,即(1:376),和(377:end)
Train_InPut = Data(1:376,InPut_num); % 训练输入
Train_OutPut = Data(1:376,OutPut_num); % 训练输出
Test_InPut = Data(377:end,InPut_num); % 测试输入
Test_OutPut = Data(377:end,OutPut_num); % 测试输出%% 数据归一化
% 将数据归一化到0-1之间
Temp = [Train_OutPut;Test_OutPut];
[~, Ps] = mapminmax(Temp',0,1); 
% 归一化训练输入值
Sc = size(Train_InPut);
Temp = reshape(Train_InPut,[1,Sc(1)*Sc(2)]);
Temp = mapminmax('apply',Temp,Ps);
Train_InPut = reshape(Temp,[Sc(1),Sc(2)])';
% 归一化测试输入值
Sc = size(Test_InPut);
Temp = reshape(Test_InPut,[1,Sc(1)*Sc(2)]);
Temp = mapminmax('apply',Temp,Ps);
Test_InPut = reshape(Temp,[Sc(1),Sc(2)])';
% 归一化训练输出值
Train_OutPut = mapminmax('apply',Train_OutPut',Ps);
% 归一化测试输出值
Test_OutPut = mapminmax('apply',Test_OutPut',Ps);

 四、完整程序+数据+说明文档下载:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/192987.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TURN 协议

TURN 地址分配 抓包过程 TURN 连接建立 这里指的是 Client 收到对端从 TURN 分配的 IP 和 端口 ,和对端的 TURN 和 IP 绑定的过程 CreatePermission Request 等消息,都会携带有对端的 TURN 和 IP 抓包过程

【数据结构】图的存储结构(邻接矩阵)

一.邻接矩阵 1.图的特点 任何两个顶点之间都可能存在边,无法通过存储位置表示这种任意的逻辑关系。 图无法采用顺序存储结构。 2.如何存储图? 将顶点与边分开存储。 3.邻接矩阵(数组表示法) 基本思想: 用一个一维数…

C++二分查找算法:查找和最小的 K 对数字

相关专题 二分查找相关题目 题目 给定两个以 非递减顺序排列 的整数数组 nums1 和 nums2 , 以及一个整数 k 。 定义一对值 (u,v),其中第一个元素来自 nums1,第二个元素来自 nums2 。 请找到和最小的 k 个数对 (u1,v1), (u2,v2) … (uk,vk) 。 示例 1:…

Java Swing算术我最棒

内容要求 1) 本次程序设计是专门针对 Java 课程的,要求使用 Java 语言进行具有一定代码量的程序开发。程序的设计要结合一定的算法,在进行代码编写前要能够设计好自己的算法。 本次程序设计涉及到 Java 的基本语法,即课堂上所介绍的变量、条件语句、循…

zabbix-proxy分布式监控

Zabbix是一款开源的企业级网络监控软件,可以监测服务器、网络设备、应用程序等各种资源的状态和性能指标。在大型环境中,如果只有一个Zabbix Server来监控所有的节点,可能会遇到性能瓶颈和数据处理难题。 为了解决这个问题,Zabbi…

cocos 构建发布没有对话框

控制台log输出为何频频失踪?   wxss代码为何频频失效?   wxml布局为何乱作一团?   究竟是道德的沦丧?还是人性的缺失?   让我们一起来 走 跑进科学 前言 游戏审核了六个月终于通过了 我说改点东西再构建发布一版 点半天没反应 正文 1.打开项目目录 2.关闭cocosC…

机器学习笔记 - Ocr识别中的文本检测EAST网络概述

一、文本检测 文本检测简单来说就是找到图像中可以出现文本的区域。例如,请参见下图,其中在检测到的文本周围绘制了绿色边框。 在进行文本检测时,你可能会遇到两种情况 具有结构化文本的图像:这是指具有干净/均匀背景和常规字体的图像。文本大多密集,行结构正确,…

二分查找算法合集

二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。 时间复杂度 O(logn) 自己写二分算法 左闭右开 左开右闭C算法&a…

MyBatis逆向工程

新建Maven工程 <build><plugins><plugin><!--mybatis代码自动生成插件--><groupId>org.mybatis.generator</groupId><artifactId>mybatis-generator-maven-plugin</artifactId><version>1.3.6</version><confi…

asp.net学生成绩评估系统VS开发sqlserver数据库web结构c#编程计算机网页项目

一、源码特点 asp.net 学生成绩评估系统 是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 系统运行视频连接&#xff1a;https://www.bilibili.com/video/BV1Wz4y1A7CG/ 二、功能介绍 本系统使用Microsof…

Apache Hive源码阅读环境搭建

前置软件&#xff1a; JDK 1.8 Maven 3.3.9 1 下载源码 # 下载源码 git clone https://github.com/apache/hive.gitcd hive# 查看标签 git tag# 切换到要阅读的指定版本的tag git checkout rel/release-2.1.02 编译源码 mvn clean install -DskipTests执行报错 日志如下 E…

Android SdkManager简介

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、商业变现、人工智能等&#xff0c;希望大家多多支持。 目录 一、导读二、概览三、 安装使用3.1 安装3.2 使用3.3 选项…