【我和Python算法的初相遇】——体验递归的可视化篇

🌈个人主页: Aileen_0v0
🔥系列专栏:PYTHON数据结构与算法学习系列专栏
💫"没有罗马,那就自己创造罗马~" 

目录

递归的起源

什么是递归?

 利用递归解决列表求和问题

递归三定律

递归应用-整数转换为任意进制数

递归可视化 

画一个正方形 

画一个五角星 

画一个九边形 

画圆形

画一个等腰三角形 

利用递归画一个螺旋 

利用递归画一颗分形树 

利用递归画一个谢尔平斯基三角形


递归的起源

递归是一种算法,它利用函数的自身调用来解决问题。递归的历史可以追溯到古代的数学家和逻辑学家,如希腊哲学家亚里士多德和印度数学家阿耶尔巴塔。然而,递归算法的实际应用可以追溯到早期的计算机科学,尤其是在20世纪40年代和50年代的计算机发展初期。

在20世纪初,数学家David Hilbert提出了“希尔伯特问题”,其中包括一个著名的问题——哥德尔不完备定理。这个定理表明,任何一个形式化的系统都无法证明自身完备。这导致了一些数学家开始研究递归函数,因为递归函数是一种强大的工具,可以用来刻画数学中的可计算性概念。在20世纪40年代,递归理论被广泛研究,它为计算机科学的发展奠定了基础。

早期计算机(如ENIAC)是通过执行单个指令来执行操作的,因此递归算法在这些机器上的执行效率较低。然而,随着计算机硬件和编程语言的发展,递归算法变得更加普遍和有效。今天,递归算法被广泛用于计算机科学中的许多应用领域,如数据结构设计、图像处理、机器学习和自然语言处理。


什么是递归?

递归是一种解决问题的方法,其精髓在于将问题分解为规模更小的相同问题持续分解,直到问题规模小到可以用非常简单直接的方式来解决。
递归的问题分解方式非常独特,其算法方面的明显特征就是:在算法流程中调用自身
递归为我们提供了一种对复杂问题的优雅解决方案,精妙的递归算法常会出奇简单令人赞叹。

问题:

给定一个列表,返回所有数的和列表中数的个数不定,需要一个循环和一个累加变量来迭代求和

def Listsum(nl):sum = 0for i in nl:sum += ireturn sumprint(Listsum([1,2,3,4]))

 利用递归解决列表求和问题


程序很简单,但假如没有循环语句 ?既不能用for,也不能用while还能对不确定长度的列表求和么?

 


递归三定律

1.结束条件

2.向基态前进

3.自己调用自己


递归应用-整数转换为任意进制数

我们用最熟悉的十进制分析下这个问题

十进制有十个不同符号: convString =0123456789"
比十小的整数,转换成十进制
直接查表就可以了: convString[n] 

比十大的整数想办法把比十大的整数拆成一系列比十小的整数,逐个查表
比如七百六十九,拆成七、六、九,查表得到769就可以了

所以,在递归三定律里,我们找到了“,就是小于十的整数本结束条件”

拆解整数的过程就是向“基本结束条件”演进的过程
我们用整数除,和求余数两个计算来
将整数一步步拆开除以“进制基base(// base)对“进制基”求余数 (% base)

#n为转换的数字   base为进制数
def tostring(n,base):coverstring = "0123456789"if n < base :return coverstring[n]else:return tostring(n // base , base) + coverstring[n % base]
print(tostring(1999,10))


递归可视化 


画一个正方形 

import turtle
t = turtle.Turtle()
#通过四次向右转90度画一个边长为100的正方形
for i in range(4):t.forward(100)t.right(90)
turtle.done()

 

画一个五角星 

#画五角星
import turtle
t = turtle.Turtle()
t.pencolor("red")
t.pensize(3)
for i in range(5):t.forward(100)t.right(144)
t.hideturtle()turtle.done()


画一个九边形 

#画九边形
import turtle
t = turtle.Turtle()
t.pencolor("blue")
t.pensize(10)
for i in range(9):t.forward(100)t.left(320)
t.hideturtle()
turtle.done()


画圆形

#画圆形
import turtle
t = turtle.Turtle()
t.pencolor("blue")
t.pensize(10)
for i in range(1):t.circle(180)
t.hideturtle()
turtle.done()


画一个等腰三角形 

#画等腰三角形
import turtle
t = turtle.Turtle()
t.pencolor("blue")
t.pensize(10)
for i in range(4):t.forward(100)t.left(120)
t.hideturtle()
turtle.done()


利用递归画一个螺旋 

#内置库,用于画图的模块
import turtle
#实例化turtle对象
my_turtle = turtle.Turtle()
#调用窗口
my_win = turtle.Screen()def draw_spiral(my_turtle,line_len):if line_len > 0:# 向当前方向走line_len 个像素my_turtle.forward(line_len)#箭头向右转90度my_turtle.left(90)#调用自己draw_spiral(my_turtle,line_len - 5)#♥这个图告诉我们递归不一定要有返回值
draw_spiral(my_turtle,300)
my_win.exitonclick()


利用递归画一颗分形树 

def tree(branch_len, t):if branch_len > 5:t.forward(branch_len)t.right(20)tree(branch_len-15, t)t.left(40)tree(branch_len-15, t)t.right(20)t.backward(branch_len)import turtle
t = turtle.Turtle()
my_win = turtle.Screen()
t.left(90)
t.up()
t.backward(200)
t.down()
t.color("black")
tree(110,t)
my_win.exitonclick()

 


利用递归画一个谢尔平斯基三角形

#绘制谢尔平斯基三角形的辅助函数
import turtle
def draw_triangle(points , color, my_turtle ):my_turtle.fillcolor ( color )my_turtle.up()my_turtle.goto(points[0][0],points[0][1])my_turtle.down()my_turtle.begin_fill()my_turtle.goto(points[1][0],points [1][1])my_turtle.goto(points[2][0],points [2][1])my_turtle.goto(points[0][0],points [0][1])my_turtle.end_fill()def get_mid(p1,p2 ):return ((p1[0] + p2[0]) / 2 , (p1[1] + p2[1]) / 2)# 绘制谢尔平斯基三角形
def sierpinski(points, degree, my_turtle):colormap = ["blue","red","green","white","yellow","violet","orange",]draw_triangle(points, colormap[degree], my_turtle)if degree > 0:sierpinski([points[0],get_mid(points[0], points[1]),get_mid(points[0], points[2]),],degree - 1,my_turtle,)sierpinski([points[1],get_mid(points[0],points[1]),get_mid(points[1],points[2]),],degree - 1,my_turtle,)sierpinski([points[2],get_mid(points[2],points[1]),get_mid(points[0],points[2]),],degree - 1,my_turtle,)def main():my_turtle = turtle.Turtle()my_win = turtle.Screen()my_points =  [[-100,-50],[0,100],[100,-50]]sierpinski(my_points, 5, my_turtle)my_win.exitonclick()print(main())

 

📝全文总结

本文主要讲解:
    本文主要讲解了递归的历史起源以及使用规则 —— 我们通过递归可以将复杂问题简单化,并且我们还学习了如何通过递归进行进制转换,以及如何通过递归去画出我们想要的图形---螺旋图,分形树,谢尔基三角形。

     今天的干货分享到这里就结束啦!如果觉得文章还可以的话,希望能给个三连支持一下,Aileen的主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就我前进的最大动力!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/193065.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#,数值计算——插值和外推,曲线插值(Curve_interp)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Object for interpolating a curve specified by n points in dim dimensions. /// </summary> public class Curve_interp { private int dim { get; s…

上网行为审计软件能审计到什么

上网行为审计软件是一种用于监控和分析员工在工作时间使用互联网行为的软件工具。这种软件可以帮助企业管理员工在工作时间内的互联网使用情况&#xff0c;以确保员工的行为符合企业规定和法律法规。 域之盾软件---上网行为审计软件可以审计到以下内容&#xff1a; 1、网络访问…

初刷leetcode题目(2)——数据结构与算法

&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️Take your time ! &#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️&#x1f636;‍&#x1f32b;️…

openGauss通过VIP实现的故障转移

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

浅谈WPF之控件模板和数据模板

WPF不仅支持传统的Windows Forms编程的用户界面和用户体验设计&#xff0c;同时还推出了以模板为核心的新一代设计理念。在WPF中&#xff0c;通过引入模板&#xff0c;将数据和算法的“内容”和“形式”进行解耦。模板主要分为两大类&#xff1a;数据模板【Data Template】和控…

算法设计与分析复习--递归与分治(二)

文章目录 上一篇归并排序统计逆序对快速排序线性时间选择最接近点对问题一维二维 循环赛日程表下一篇 上一篇 算法设计与分析复习–递归与分治(一) 归并排序 问题特点&#xff1a;局部有序到整体有序 AcWing787.归并排序 #include <iostream> #include <cstring>…

信安.网络安全.UDP协议拥塞

第一部分 如何解决UDP丢包问题 一、UDP 报文格式 每个 UDP 报文分为 UDP 报头和 UDP 数据区两部分。报头由 4 个 16 位长&#xff08;2 字节&#xff09;字段组成&#xff0c;分别说明该报文的源端口、目的端口、报文长度和校验值。UDP 报文格式如图所示。 UDP 报文中每个…

【如何学习Python自动化测试】—— 页面元素定位

接上篇自动化测试环境搭建&#xff0c;现在我们介绍 webdriver 对浏览器操作的 API。 2、 页面元素定位 通过自动化操作 web 页面&#xff0c;首先要解决的问题就是定位到要操作的对象&#xff0c;比如要模拟用户在页面上的输入框中输入一段字符串&#xff0c;那就必须得定位到…

FPGA模块——IIC协议(读写PCF8591)

FPGA模块——IIC协议&#xff08;读取PCF8591&#xff09; PCF8591/AT8591芯片对iic协议的使用 PCF8591/AT8591芯片 低功耗8位CMOS数据采集设备&#xff0c;4路模拟输入&#xff0c;1路模拟输出&#xff0c;分时多路复用&#xff0c;读取数据用串型iic总线接口&#xff0c;最大…

RT-Thread STM32F407 BMI088--SPI

BMI088是一款高性能6轴惯性传感器&#xff0c;由16位数字三轴24g加速度计和16位数字三轴2000/ s陀螺仪组成。 这里用SPI来驱动BMI088进行数据解读 第一步&#xff0c;首先在 RT-Thread Settings中进行配置 第二步&#xff0c;退出RT-Thread Settings&#xff0c;进入board.h…

UiPath Studio 2023.10 Crack

UiPath Studio是一款功能强大且用户友好的集成开发环境 (IDE)&#xff0c;专为机器人流程自动化 (RPA) 设计。它由自动化技术领域的领先公司UiPath开发。 以下是 UiPath Studio 的一些主要功能和组件&#xff1a; 图形用户界面 (GUI)&#xff1a;UiPath Studio 具有直观且用户友…

Kafka(四)消费者消费消息

文章目录 如何确保不重复消费消息&#xff1f;消费者业务逻辑重试消费者提交自定义反序列化类消费者参数配置及其说明重要的参数session.time.ms和heartbeat.interval.ms和group.instance.id增加消费者的吞吐量消费者消费的超时时间和poll()方法的关系 消费者消费逻辑启动消费者…