6.9平衡二叉树(LC110-E)

绝对值函数:abs()

算法:

高度和深度的区别:

节点的高度:节点到叶子节点的距离(从下往上)

节点的深度:节点到根节点的距离(从上往下)

逻辑:一个平衡二叉树的每个节点的左右子树都是平衡二叉树

调试过程:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def isBalanced(self, root: Optional[TreeNode]) -> bool:if self.getheight(root) == 0:return Trueelse:return Falsedef getheight(self, node) -> int:if node == None:return 0        leftheight = self.getheight(node.left)rightheight = self.getheight(node.right)#左子树若有不平衡的,就返回-1if leftheight == -1:return -1#右子树若有不平衡的,就返回-1if rightheight == -1:return -1if abs(leftheight-rightheight)>1:return -1else:return 0

原因:问题出在return 0上面,改成return 1 + max(leftheight, rightheight)就好了

`return 0`的含义是将节点的高度设置为0,这是不正确的。

正确的做法是使用`return 1 + max(leftheight, rightheight)`来计算节点的高度。这里的`max(leftheight, rightheight)`表示选择左子树和右子树中较大的高度作为当前节点的高度,然后再加上1,表示当前节点的高度。

通过这种方式,我们可以确保节点的高度正确地传递到父节点,并在比较节点的高度差时得到正确的结果。如果节点的左子树和右子树高度差超过1,那么在递归过程中会返回-1,最终导致`isBalanced`函数返回False。

正确代码:

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:def isBalanced(self, root: Optional[TreeNode]) -> bool:if self.getheight(root) != -1:return Trueelse:return Falsedef getheight(self, node) -> int:if node == None:return 0        leftheight = self.getheight(node.left)rightheight = self.getheight(node.right)#左子树若有不平衡的,就返回-1if leftheight == -1:return -1#右子树若有不平衡的,就返回-1if rightheight == -1:return -1if abs(leftheight-rightheight)>1:return -1else:return 1 + max(leftheight, rightheight)

时间空间复杂度:
时间复杂度:

  • `isBalanced`函数中,我们调用了`getheight`函数来计算每个节点的高度。在最坏情况下,需要遍历二叉树的所有节点,因此时间复杂度为O(n),其中n是二叉树中的节点数。
  • `getheight`函数是一个递归函数,它会遍历二叉树的所有节点。对于每个节点,我们需要递归地计算其左子树和右子树的高度,因此总的时间复杂度也是O(n)。
  • 综上所述,整个算法的时间复杂度为O(n)。

空间复杂度:

  • 在`getheight`函数中,递归调用会产生函数调用栈。在最坏情况下,二叉树是一个完全不平衡的树,即链表形式,此时递归的深度为n,因此空间复杂度为O(n)。
  • 综上所述,整个算法的空间复杂度为O(n)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/193265.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

0基础编程教学,编程零基础该学什么,中文编程工具下载

0基础编程教学,编程零基础该学什么,中文编程工具下载 给大家分享一款中文编程工具,零基础轻松学编程,不需英语基础,编程工具可下载。 这款工具不但可以连接部分硬件,而且可以开发大型的软件,象…

详解Java设计模式之职责链模式

原文:详解Java设计模式之职责链模式_java_脚本之家 责任链模式是一种行为设计模式,使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系,文中通过代码示例给大家介绍的非常详细,需要的朋友可以参考下 − 目…

Bert学习笔记(简单入门版)

目 录 一、基础架构 二、输入部分 三、预训练:MLMNSP 3.1 MLM:掩码语言模型 3.1.1 mask模型缺点 3.1.2 mask的概率问题 3.1.3 mask代码实践 3.2 NSP 四、如何微调Bert 五、如何提升BERT下游任务表现 5.1 一般做法 5.2 如何在相同领域数据中进…

MongoDB之索引和聚合

文章目录 一、索引1、说明2、原理3、相关操作3.1、创建索引3.2、查看集合索引3.3、查看集合索引大小3.4、删除集合所有索引(不包含_id索引)3.5、删除集合指定索引 4、复合索引 二、聚合1、说明2、使用 总结 一、索引 1、说明 索引通常能够极大的提高查…

数据采集与大数据架构分享

实现场景 要实现亿级数据的长期收集更新,并对采集后的数据进行整理和加工,用于人工智能的训练数据素材集。 数据采集 java支持的爬虫框架还是有很多的,如:webMagic、Spider、Jsoup等添加链接描述 pipeline处理管道 数据并发开发…

黔院长 | 为什么要调经络?原来通经络对人体健康如此重要!

人体的组成较为复杂,在外有皮肤、毛发;在内有经络、五脏;其他还有我们看不到的精气、津液等等,也因此人体会生各种各样的疾病。 为什么说经络畅通对人体健康如此重要?身体内外始终是一个统一的整体,内外之间…

Dynamsoft Barcode Reader新框架将医疗视觉提升到新水平

Dynamsoft Vision 框架将医疗保健领域的计算机视觉提升到新的水平 引入图像捕获、内容理解、结果解析和交互式工作流程的聚合 SDK,以简化复杂的流程。 温哥华 – 2023 年 7 月 17 日 – Dynamsoft™ 发布了 Dynamsoft Barcode Reader SDK C Edition v10.0.0。更新…

OpenAI发布会中不起眼的重大更新

上周,OpenAI的历史首届开发者大会上,OpenAI的首席执行官山姆奥特曼展示了一系列产品更新,包含了众多重磅功能,就算单独拿出来都能让科技圈震一震,一下能发布这么多也真是家底厚。 果不其然,接下来的一周&am…

新版mmdetection3d将3D bbox绘制到图像

环境信息 使用 python mmdet3d/utils/collect_env.py收集环境信息 sys.platform: linux Python: 3.7.12 | packaged by conda-forge | (default, Oct 26 2021, 06:08:21) [GCC 9.4.0] CUDA available: True numpy_random_seed: 2147483648 GPU 0,1: NVIDIA GeForce RTX 3090 …

【算法挨揍日记】day30——300. 最长递增子序列、376. 摆动序列

300. 最长递增子序列 300. 最长递增子序列 题目解析: 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如&#…

原型网络Prototypical Network的python代码逐行解释,新手小白也可学会!!-----系列8

文章目录 前言一、原始代码二、对每一行代码的解释:总结 前言 这是该系列原型网络的最后一段代码及其详细解释,感谢各位的阅读! 一、原始代码 if __name__ __main__:##载入数据labels_trainData, labels_testData load_data() # labels_…