基于海洋捕食者算法优化概率神经网络PNN的分类预测 - 附代码

基于海洋捕食者算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于海洋捕食者算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于海洋捕食者优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用海洋捕食者算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于海洋捕食者优化的PNN网络

海洋捕食者算法原理请参考:https://blog.csdn.net/u011835903/article/details/118468662

利用海洋捕食者算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

海洋捕食者参数设置如下:

%% 海洋捕食者参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,海洋捕食者-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/193295.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安卓手机投屏到电视,跨品牌、跨地域同样可以实现!

在手机网页上看到的视频,也可以投屏到电视上看! 长时间使用手机,难免脖子会酸。这时候,如果你将手机屏幕投屏到大电视屏幕,可以减缓脖子的压力,而且大屏的视觉体验更爽。 假设你有一台安卓手机,…

初级程序员如何进阶

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 疑问的无限递归 我刚入…

回归预测 | Matlab实现HPO-ELM猎食者算法优化极限学习机的数据回归预测

回归预测 | Matlab实现HPO-ELM猎食者算法优化极限学习机的数据回归预测 目录 回归预测 | Matlab实现HPO-ELM猎食者算法优化极限学习机的数据回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现HPO-ELM猎食者算法优化极限学习机的数据回归预测(…

【蓝桥杯选拔赛真题21】C++行李运费 第十二届蓝桥杯青少年创意编程大赛C++编程选拔赛真题解析

C/C++行李运费 第十二届蓝桥杯青少年创意编程大赛C++选拔赛真题 一、题目要求 1、编程实现 乘坐飞机时,行李超出规定重量后,会对行李进行托运且收取托运费。 以下是某航空公司行李托运的收费标准:“行李重量在 20 公斤内(含 20)按照每公斤 10 元收取费用,超过 20 公斤的…

麻将馆电脑计费系统,棋牌室怎么用电脑控制灯计时,佳易王计时计费系统软件下载

麻将馆电脑计费系统,棋牌室怎么用电脑控制灯计时,佳易王计时计费系统软件下 棋牌室电脑灯控系统,需要安装一个灯控器,软件发出开灯和关灯的指令,相应的灯就打开或关闭。在点击开始计时的时候,开灯&#xff…

后端技术知识点内容-全部内容-面试宝典-后端面试知识点

文章目录 -2 flink-1 linux of viewlinux查看占用cup最高的10个进程的命令; 〇、分布式锁 & 分布式事务0-1分布式锁--包含CAP理论模型概述分布式锁:分布式锁应该具备哪些条件:分布式锁的业务场景: 分布式锁的实现方式有&#…

如何使用websocket+node.js实现pc后台与小程序端实时通信

如何使用websocketnode.js实现pc后台与小程序端实时通信 一、使用node.js创建一个服务器二、pc后台连接ws三、小程序端连接ws四、实现效果 实现功能:实现pc后台与小程序端互发通信能够实时检测到 一、使用node.js创建一个服务器 1.安装ws依赖 npm i ws2.创建index.js const…

酷柚易汛ERP - 盘点操作指南

1、应用场景 盘点功能是定期或临期对库存货物进行清点,使账面记录与实际库存相符合,从而随时掌握货物盈亏状态。 2、主要操作 2.1 盘点商品查询 打开【仓库】-【盘点】新增盘点单,筛选需要盘点的日期范围、库存及相应商品 2.2 录入盘点数…

系列七、GC垃圾回收【四大垃圾算法-标记压缩算法】

一、原理 在整理压缩阶段,不再对标记的对象回收,而是通过所有存活对象都向一端移动。可以看到,标记的存活对象将会被整理,按照内存地址依次排列。如此一来,当我们需要给新对象分配内存时,JVM只需要持有一个…

Redis篇---第七篇

系列文章目录 文章目录 系列文章目录前言一、是否使用过 Redis Cluster 集群,集群的原理是什么?二、 Redis Cluster 集群方案什么情况下会导致整个集群不可用?三、Redis 集群架构模式有哪几种?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分…

TG Pro v2.87(mac温度风扇速度控制工具)

TG Pro 是适用于 macOS 的温度和风扇速度控制工具,可让您监控 Mac 组件(例如 CPU 和 GPU)的温度和风扇速度。如果您担心 Mac 过热或想要手动调整风扇速度以降低噪音水平,这将特别有用。 除了温度和风扇监控,TG Pro 还…

hive sql 行列转换 开窗函数 炸裂函数

hive sql 行列转换 开窗函数 炸裂函数 准备原始数据集 学生表 student.csv 讲师表 teacher.csv 课程表 course.csv 分数表 score.csv 员工表 emp.csv 雇员表 employee.csv 电影表 movie.txt 学生表 student.csv 001,彭于晏,1995-05-16,男 002,胡歌,1994-03-20,男 003,周杰伦,…