53. 最大子数组和
53. 最大子数组和
题目描述:
给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
解题思路:
状态表示:
dp【i】表示以i位置结尾的最大子数组的元素之和
状态转移方程:
dp[i]=max(dp[i-1],0)+nums[i];
初始化:
dp【0】=nums【0】
填表顺序:左到右
返回值:0-n-1范围中的最大值
解题代码:
ass Solution {
public:int maxSubArray(vector<int>& nums) {int n=nums.size();vector<int>dp(n,0);dp[0]=nums[0];for(int i=1;i<n;i++)dp[i]=max(dp[i-1],0)+nums[i];int ret=INT_MIN;for(int i=0;i<n;i++)ret=max(ret,dp[i]);return ret;}
};
918. 环形子数组的最大和
918. 环形子数组的最大和
题目描述:
给定一个长度为 n
的环形整数数组 nums
,返回 nums
的非空 子数组 的最大可能和 。
环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i]
的下一个元素是 nums[(i + 1) % n]
, nums[i]
的前一个元素是 nums[(i - 1 + n) % n]
。
子数组 最多只能包含固定缓冲区 nums
中的每个元素一次。形式上,对于子数组 nums[i], nums[i + 1], ..., nums[j]
,不存在 i <= k1, k2 <= j
其中 k1 % n == k2 % n
。
解题思路:
本题与「最⼤⼦数组和」的区别在于,考虑问题的时候不仅要分析「数组内的连续区域」,还要考
虑「数组⾸尾相连」的⼀部分。结果的可能情况分为以下两种:
i. 结果在数组的内部,包括整个数组;
ii. 结果在数组⾸尾相连的⼀部分上。
其中,对于第⼀种情况,我们仅需按照「最⼤⼦数组和」的求法就可以得到结果,记为 fmax 。
对于第⼆种情况,我们可以分析⼀下:
i. 如果数组⾸尾相连的⼀部分是最⼤的数组和,那么数组中间就会空出来⼀部分;
ii. 因为数组的总和 sum 是不变的,那么中间连续的⼀部分的和⼀定是最⼩的;
因此,我们就可以得出⼀个结论,对于第⼆种情况的最⼤和,应该等于 sum - gmin ,其中
gmin 表⽰数组内的「最⼩⼦数组和」。
两种情况下的最⼤值,就是我们要的结果。
但是,由于数组内有可能全部都是负数,第⼀种情况下的结果是数组内的最⼤值(是个负数),第
⼆种情况下的 gmin == sum ,求的得结果就会是 0 。若直接求两者的最⼤值,就会是 0 。但
是实际的结果应该是数组内的最⼤值。对于这种情况,我们需要特殊判断⼀下。
由于「最⼤⼦数组和」的⽅法已经讲过,这⾥只提⼀下「最⼩⼦数组和」的求解过程,其实与「最
⼤⼦数组和」的求法是⼀致的。⽤ f 表⽰最⼤和, g 表⽰最⼩和。
1. 状态表⽰:
g[i] 表⽰:以 i 做结尾的「所有⼦数组」中和的最⼩值。
2. 状态转移⽅程:
g[i] 的所有可能可以分为以下两种:
i. ⼦数组的⻓度为 1 :此时 g[i] = nums[i] ;
ii. ⼦数组的⻓度⼤于 1 :此时 g[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和的
最⼩值再加上 nums[i] ,也就是 g[i - 1] + nums[i] 。
由于我们要的是最⼩⼦数组和,因此应该是两种情况下的最⼩值,因此可得转移⽅程:
g[i] = min(nums[i], g[i - 1] + nums[i]) 。
3. 初始化:
可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要保证后续填表是正确的;
ii. 下标的映射关系。
在本题中,最前⾯加上⼀个格⼦,并且让 g[0] = 0 即可。
4. 填表顺序:
根据状态转移⽅程易得,填表顺序为「从左往右」。
5. 返回值:
a. 先找到 f 表⾥⾯的最⼤值 -> fmax ;
b. 找到 g 表⾥⾯的最⼩值 -> gmin ;
c. 统计所有元素的和 -> sum ;
b. 返回 sum == gmin ? fmax : max(fmax,sum-gmin)
解题代码:
class Solution {
public:int maxSubarraySumCircular(vector<int>& nums) {int n=nums.size();if(n==1)return nums[0];vector<int>f(n,0);vector<int>g(n,0);f[0]=nums[0],g[0]=nums[0];int sum=nums[0];for(int i=1;i<n;i++){f[i]=max(f[i-1],0)+nums[i];g[i]=min(g[i-1],0)+nums[i];sum+=nums[i];}int max_num=INT_MIN;int min_num=INT_MAX;for(int i=0;i<n;i++){max_num=max(max_num,f[i]);min_num=min(min_num,g[i]);}if(sum==min_num)return max_num;return max(max_num,sum-min_num);}
};