实验三 页面置换算法

一.  实验目的:

1、熟悉虚存管理的各种页面淘汰算法

二、实验环境:

硬件环境:计算机一台,局域网环境;

软件环境:Windows XP及以上版本 Professional操作系统平台,Visual C++ 6.0专业版或企业版。

三 . 实验指导:     

  制定为进程分配的物理块数;给出该进程的调页顺序,然后采用不同的页面置换算法,给出具体的页面调用情况。

  1. 输入具体的物理块数;
  2. 给出进程的调页顺序;
  3. 选择具体的页面置换算法;
  4. 给出该页面置换算法的调页结果,并计算缺页率。

四、实验步骤(含流程图,实验过程分析等)

算法流程:

  1. 初始化一个大小为物理块数的数组,用于存储当前在内存中的页面。
  2. 遍历给定的引用串中的每个页面。
  3. 对于每个页面,检查它是否已经在数组中。如果是,则跳过该页面并继续遍历下一个页面。
  4. 如果该页面不在数组中,则需要进行页面置换。
  5. 重复步骤3和4,直到遍历完引用串中的所有页面。
  6. 计算缺页次数和缺页率。

五、实验结果及分析

图表 1 先进先出算法

图表 2 最近最久未使用算法

图表 3 最佳置换算法

六、实验源代码

#include<stdio.h>#define N 100   //物理块数量上限#define M 1000    //页面数量上限int list[N], num;      //队列存放物理块对应数据  ,物理块数量int n, yebiao[M];    //n总数 ,yebiao[M]存放页面号引用串int miss = 0, missl[N] = { 0 };   //缺页数,missl[n]判断缺页情况int pro[N], prol[N] = { 0 };   //优先级int temp;    //最久-》存在时记录调用页面int k = 0;   //打印页面号int cun[M][N], Re = 0;    //存放物理块信息,用于后续输出void init() {Re = 0;k = 0;miss = 0;for (int i = 0;i < n;i++) {missl[i] = 0;}for (int i = 0; i < num; i++) {list[i] = -1;}}    //初始化,全部置为-1void _print() {printf("页面号:  ");for (int i = 0;i < n;i++) {printf("   %d", yebiao[i]);}printf("\n\n");for (int i = 0; i < num; i++) {printf("物理块:  ");for (int j = 0;j < n;j++) {if (cun[j][i] == -1) {printf("   *");}else {printf("%4d", cun[j][i]);}}printf("\n");}printf("缺页位置:");for (int i = 0;i < n;i++) {if (missl[i] == 1) {printf("   #");}else {printf("    ");}}k++;printf("\n");}    //打印队列结果void jilu() {for (int i = 0;i < num;i++) {cun[Re][i] = list[i];}Re++;}bool cunzai(int x) {for (int i = 0;i < num;i++) {if (x == list[i]) {temp = i;    //最近最久未使用存在时排序return true;}}return false;}  //判断是否在队列内void inlist(int x) {for (int i = 0;i < n;i++) {list[i] = list[i + 1];}list[num - 1] = x;}   //进队列void _printmiss() {printf("缺页次数:%d   \n缺页率:%d/%d\n", miss, miss, n);}void priority(int x) {for (;x < n;x++) {for (int i = 0;i < num;i++) {if (list[i] == yebiao[x] && prol[i] == 0) {pro[i] = x;      // 队列i在页表中的位置越靠后优先级越高prol[i] = 1;}}}for (int i = 0;i < num;i++) {   //页表中不存在队列i  优先级最大if (prol[i] == 0) {pro[i] = 1000;}}}//判断优先级void prosort() {int templ;for (int i = 0;i < num - 1;i++) {for (int j = 0;j < num - 1 - i;j++) {if (pro[j] < pro[j + 1]) {templ = pro[j];pro[j] = pro[j + 1];pro[j + 1] = templ;templ = list[j];list[j] = list[j + 1];list[j + 1] = templ;}}}for (int i = 0;i < num;i++) {   //复原prol[i] = 0;}} //优先级排序void optimal() {init();     //初始化int count = n;int i = 0;while (count != 0) {if (i < num) {list[i] = yebiao[i];miss++;missl[i] = 1;}else if (cunzai(yebiao[i])) {}else {priority(i);prosort();inlist(yebiao[i]);miss++;missl[i] = 1;}jilu();count--;i++;}_print();_printmiss();}void fifo() {    //先进先出init();     //初始化int count = n;int i = 0;while (count != 0) {if (i < num) {list[i] = yebiao[i];miss++;missl[i] = 1;}else if (cunzai(yebiao[i])) {}else {inlist(yebiao[i]);miss++;missl[i] = 1;}count--;i++;jilu();}_print();_printmiss();}void lru() {     //最近最久未使用init();     //初始化int count = n;int i = 0;while (count != 0) {if (i < num) {list[i] = yebiao[i];miss++;missl[i] = 1;}else if (cunzai(yebiao[i])) {list[num] = list[temp];for (int j = temp;j <= num;j++) {list[j] = list[j + 1];}}else {inlist(yebiao[i]);miss++;missl[i] = 1;}jilu();count--;i++;}_print();_printmiss();}int main() {printf("请输入物理块数量:");scanf("%d", &num);printf("请输入要访问的页面总数:");scanf("%d", &n);printf("请输入要访问的页面号:");for (int i = 0; i < n; i++) {scanf("%d", &yebiao[i]);}int chose = 1;while (chose) {printf("请选择所需的置换算法:\n");printf("1.FIFO 2.LRU 3.0PT 4.退出\n");scanf("%d", &chose);if (chose == 1) {fifo();}if (chose == 2) {lru();}if (chose == 3) {optimal();}if (chose == 4) {break;}}}/*3207 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/193539.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构及八种常用数据结构简介

data-structure 数据结构是一种存在某种关系的元素的集合。“数据” 是指元素&#xff1b;“结构” 是指元素之间存在的关系&#xff0c;分为 “逻辑结构” 和 “物理结构&#xff08;又称存储结构&#xff09;”。 常用的数据结构有 数组&#xff08;array&#xff09;、栈&…

Nacos入门

Nacos&#xff1a;以“服务”为中心的现代应用架构的服务基础设施 1、Nacos功能 Nacos主要功能在微服务中主要体现&#xff1a;配置中心、注册中心 1.1、Nacos优点 简单易用、特性丰富、超高性能、超大容量、高可用&#xff08;这里几个特点下面会提到&#xff09; 有些友…

突发 Chatgpt之父被开,GPT放开注册,注册难度大幅降低!

大家好&#xff0c;我是菜鸟哥&#xff0c;又到周末啦&#xff0c;我们聊一下非技术的话题。科技圈chatgpt属于当红辣子鸡&#xff0c;是目前最火的话题。前不久才开的发布会&#xff0c;然后没几天被黑客攻击&#xff0c;导致服务中断&#xff0c;然后openai 又突然宣布gpt4停…

斯坦福机器学习 Lecture1 (机器学习,监督学习、回归问题、分类问题定义)

https://www.bilibili.com/video/BV1JE411w7Ub?p1&vd_source7a1a0bc74158c6993c7355c5490fc600 笔记如下 机器学习的定义&#xff1a;不需要明确编程就能让计算机去学习做某件事情 另一个定义 什么是监督学习&#xff1f; 给定一组 (x,y) 样本&#xff0c;学习一个 x-&g…

Rocket如何实现顺序消费

RocketMQ 支持两种消息模式 集群消费&#xff08; Clustering &#xff09;和广播消费&#xff08; Broadcasting &#xff09;。 集群消费&#xff1a;同一 Topic 下的一条消息只会被同一消费组中的一个消费者消费。也就是说&#xff0c;消息被负载均衡到了同一个消费组的多…

WMS仓库管理系统库位分配规划

分配说明 每个商品必须至少有一个分拣位&#xff08;整箱或拆零均可&#xff09;如果只设了拆零分拣位&#xff0c;则入库不分配存储位&#xff0c;只上拆零分拣位&#xff0c;对于DPS分拣商品是一品固定一个货位&#xff0c;对于RF分拣商品是动态分配货位&#xff0c;一个商品…

Vue3-provide 和 inject 跨组件传递数据

Vue3-provide 和 inject 跨组件传递数据 功能&#xff1a;将数据从App组件跨过一个组件传递到B组件中provide&#xff1a;提供数据inject&#xff1a;接收数据 // App.vue <template><h2>我是App组件&#xff08;{{num}}&#xff09;</h2><A></A&g…

Python武器库开发-flask篇之session与cookie(二十六)

flask篇之session与cookie(二十六) 在 Flask 中&#xff0c;可以使用 session 来在不同请求之间存储和传递数据。Session 在客户端和服务器端之间交换&#xff0c;但是数据存储在服务器端。 Session 与 Cookie 的区别 session 和 cookie 都可以用来在不同请求之间存储和传递…

PyTorch微调权威指南3:使用数据增强

如果你曾经参与过 PyTorch 模型的微调&#xff0c;可能会遇到 PyTorch 的内置变换函数&#xff0c;这使得数据增强变得轻而易举。 即使你之前没有使用过这些功能&#xff0c;也不必担心。 在本文中&#xff0c;我们将深入研究 PyTorch 变换换函数的世界。 我们将探索你可以使用…

【csapp lab】lab2_bomblab

文章目录 前言实验内容phase_1phase_2phase_3phase_4phase_5phase_6secret_phase 前言 刚做了csapp lab2&#xff0c;记录一下。 我这里用的的系统环境是Ubuntu22.04&#xff0c;是64位系统&#xff0c;与用32位系统可能有所差异。 实验共包括七个阶段&#xff0c;每个阶段考…

基于FPGA的五子棋(论文+源码)

1.系统设计 在本次设计中&#xff0c;整个系统硬件框图如下图所示&#xff0c;以ALTERA的FPGA作为硬件载体&#xff0c;VGA接口&#xff0c;PS/2鼠标来完成设计&#xff0c;整个系统可以完成人人对战&#xff0c;人机对战的功能。系统通过软件编程来实现上述功能。将在硬件设计…