【Python数据结构与算法】——(线性结构)精选好题分享,不挂科必看系列

🌈个人主页: Aileen_0v0
🔥系列专栏:<<Python数据结构与算法专栏>>
💫个人格言:"没有罗马,那就自己创造罗马~"

时间复杂度大小比较

1.time complexity of algorithm A is O(n^3) while algorithm B is O(2^n). Which of the following statement is TRUE? 

A.For any problem in any scale, the alogorithm A is more efficient than alogrithm B.

B.For any problem in any scale, the alogorithm B is more efficient than alogrithm A.

C.As the scale of the proble increase,the alogrithm A is more efficient than alogrithm B. 

D.As the scale of the proble increase,the alogrithm B is more efficient than alogrithm A. 

👉Review Link🔗:http://t.csdnimg.cn/BNoOJ 

所消耗的时间从小到大:

O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3)<O(2^n)<O(n!)<O(n^n)

时间越小效率越高,所以A的效率高于B,---->选择C

栈的深入理解

2.Suppose 6 items pushed in the relative order like [6,5,4,3,2,1],which pop  order is FALSE?

A.543612

B.453126

C.234156

D.346521

Review Link🔗:👉http://t.csdnimg.cn/LDWaR

进出栈无需一次性进完,一次性弹出.

可以进一个弹一个,也可以进几个,弹几个.

抓住栈的特点,先进后出,有进有出.

 

​ 

 只要深入理解栈的知识点,我们通过画图或思考形式就可以做出这道题.

所以这题应该选D,因为5应该比6先出栈.

如何影响链表时间复杂度

3.There is an single Unordered Linked List with two head and rear pointers p and q, respectively. Which of the following operations time complexity that is affected by Linked List lengths
A. Deleting the head.
B. Deleting the rear.
C. Inserting new node to head.
D. Deleting node at rear.

Review Link🔗:👉http://t.csdnimg.cn/ET039 

因为在无序链表中,删除后部需要从头节点开始遍历到尾节点,时间复杂度为O(n),n为链表长度。而其他操作只需要对头节点进行操作,时间复杂度不受链表长度的影响,几乎为O(1)。---> 选B,D

双端队列的深入理解

4.Suppose there is enqueue order "abcd' for a Deque (abcd' ehqueued at rear.) What's the possible dequue order for this Deque?
A. bdac
B. cadb

C. dbca
D. dacb
E. None of them is right.

Review Link🔗:👉

双端队列的入队顺序是:abcd,从尾部出,我们知道双端队列的特点就是两头都是可进可出的,但是不可以从中间出去. 所以逐项检验我们可得 ---> D是正确答案


📝Summary:

快速判断算法复杂度(适用于绝大多数简单情况)
确定问题规模n
循环减半过程一logn
k层关于n的循环一n
复杂情况:根据算法执行过程判断


 What's the time complexity of the following code?(n is unknown, n > 10000).

i = 1
if i:while i < n:i = i * 3else:while i < n:i = i + 10

The time complexity is O(                            ).

该代码的时间复杂度为O(logn)。因为第一个while循环中,i的值每次都会乘以3,直到i>=n为止,每次乘以3相当于对i进行了一次除法运算,假设n=i*3^k,则第一个while循环的迭代次数为log3(n),即O(logn)。第二个while循环中,i的值每次都会加上10,因此最多执行n/10次,影响可以忽略不计。因此,总的时间复杂度为O(logn)。


 What's the time complexity of the following code ? (n is unknown, n > 10000)

i = 0
j = 0
while i < n:i += 1while j < n - i:j += 1

该代码的时间复杂度为O(n^2)。外循环的执行次数为n,内循环的执行次数为(n-1)+(n-2)+...+1= (n-1)n/2,因此总的执行次数为n(n-1)*0.5,即O(n^2)。


i = 0
j = 0
while i < n:i += 1while j < n - i:j += 1j = 0

时间复杂度为O(n^2)。外层循环i最多执行n次,内层循环j最多执行n-i次,因此总的执行次数为n*(n-1)/2,即O(n^2)。

本节主要讲的是算法中如何判断时间复杂度以及深入理解栈,双端队列的特点及应用.若想了解更多关于算法的内容,可以订阅我的算法专栏:http://t.csdnimg.cn/sof15

  今天的干货分享到这里就结束啦!如果觉得文章还可以的话,希望能给个三连支持一下,Aileen的主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就我前进的最大动力! 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/194987.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

340条样本就能让GPT-4崩溃,输出有害内容高达95%?OpenAI的安全防护措施再次失效

仅需340个示例微调GPT-4&#xff0c;即可绕过安全限制&#xff0c;让模型说出“枪支改装方法”、“生化武器制作过程”等有害内容&#xff1f; OpenAI的安全防护措施再次失效&#xff0c;攻击的成功率高达95%&#xff01; 近日&#xff0c;美国顶尖大学UIUC与斯坦福联合对GPT…

LinkWeChat V4.9.8 版本发布

LinkWeChat v4.9.8 已经发布&#xff0c;基于企业微信的 SCRM 系统 LinkWeChat 是国内首个基于企业微信的开源 SCRM&#xff0c;在集成了企微强大的开放能力的基础上&#xff0c;进一步升级拓展灵活高效的客户运营能力及多元化精准营销能力&#xff0c;让客户与企业之间建立强…

基于RK3588全高端智能终端机器人主板

一、小尺寸板型设计 该款主板为小型板&#xff0c;尺寸仅为125*85mm&#xff0c;更小更紧凑&#xff0c;可完美适应各类高端智能自助终端&#xff1b; 二、八核高端处理器 采用RK3588S八核64位处理器&#xff0c;8nm LP制程&#xff0c;主频最高达2.4GHz&#xff0c;搭载Andr…

基于springboot实现应急救援物资管理系统项目【项目源码】计算机毕业设计

基于springboot实现应急救援物资管理系统演示 JAVA简介 JavaScript是一种网络脚本语言&#xff0c;广泛运用于web应用开发&#xff0c;可以用来添加网页的格式动态效果&#xff0c;该语言不用进行预编译就直接运行&#xff0c;可以直接嵌入HTML语言中&#xff0c;写成js语言&a…

数学建模-图与网络模型解题方法和代码实现

本文针对以下几个方面问题进行整理&#xff1a; 最短路问题 两个指定顶点之间的最短路径任意顶点之间的最短路径 2.最小生成树问题 求最小生成树 3.网络最大流问题 源点与汇点之间的最大流基于最大流的最小费用求解 4.旅行商问题 基于哈密顿(Hamilton)圈求解旅行商线性…

文件钓鱼-后缀隐藏文件捆绑文件压缩释放技巧

0x00 文件钓鱼 简单说下文件样本钓鱼的目的&#xff0c;为诱导用户安装木马文件&#xff0c;达到控制或者窃取某些信息的目的&#xff0c;抛开邮件的真实性。木马的伪造是一个比较关键的点&#xff0c;下面简要说下三种木马文件伪装的技巧 0x01 水坑攻击与鱼叉攻击的概念 水坑…

RTD系统

RTD&#xff08;实时派工系统&#xff09;帮助半导体工厂优化派工&#xff0c;提升生产效率&#xff0c;提高设备利用率&#xff0c;降低Lot Cycle Time&#xff0c;RTD分为&#xff1a;WhatNext和WhereNext&#xff0c;解决工厂内部机台下一步跑什么Lot和Lot生产完后去哪里的问…

车载通信架构 —— 传统车内通信网络发展回顾

车载通信架构 —— 传统车内通信网络发展回顾 我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 屏蔽力是信息过载时代一个人的特殊竞争力&#xff0c;任何…

十、Linux运行级别

1.基本介绍 运行级别说明&#xff1a; 0&#xff1a;关机 1&#xff1a;单用户【找回丢失密码】 2&#xff1a;多用户状态没有网络服务 【非常少】 3&#xff1a;多用户状态有网络服务 【最多】 4&#xff1a;系统未使用保留给用户 5&#xff1a;图形界面【Linux一启动自动进入…

Rust与其他语言对比:优势在哪里?

大家好&#xff01;我是lincyang。 今天&#xff0c;我们将深入探讨Rust语言与其他编程语言比较的优势&#xff0c;并通过具体的代码示例和性能数据来加深理解。 Rust与其他语言的比较 1. 内存安全性 Rust&#xff1a;采用所有权系统&#xff0c;编译器在编译时检查内存安全…

Linux网络ssh服务

目录 一.ssh服务基础 1.ssh服务简介 2.ssh服务原理 二.ssh服务应用 1.ssh配置文件 2.ssh连接验证 三.ssh服务端 1.修改默认端口号 2.免密连接登录 3.禁止root用户登录 4.ssh服务的最佳实践 一.ssh服务基础 1.ssh服务简介 SSH&#xff1a;是一种安全通道协议&#x…

滑动窗口练习(一)— 固定窗口最大值问题

题目 假设一个固定大小为W的窗口&#xff0c;依次划过arr&#xff0c; 返回每一次滑出状况的最大值 例如&#xff0c;arr [4,3,5,4,3,3,6,7], W 3 返回&#xff1a;[5,5,5,4,6,7] 暴力对数器 暴力对数器方法主要是用来做校验&#xff0c;不在乎时间复杂度&#xff0c;逻辑上…