遥感云大数据在灾害、水体与湿地领域案例实践及GPT【洪涝灾害、洪水敏感性和风险模拟、河道轮廓监测、地下水变化、红树林遥感制图】

近年来遥感技术得到了突飞猛进的发展,航天、航空、临近空间等多遥感平台不断增加,数据的空间、时间、光谱分辨率不断提高,数据量猛增,遥感数据已经越来越具有大数据特征。遥感大数据的出现为相关研究提供了前所未有的机遇,同时如何处理好这些数据也提出了巨大的挑战。传统的工作站和服务器已经无法胜任大区域、多尺度海量遥感数据处理的需要。

以Earth Engine(GEE)、PIE-Engine为代表全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台应用越来越广泛。GEE平台存储和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星影像、气候与天气、地球物理等方面的数据集超过80PB,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。

Google Earth Engine(GEE)

Google Earth Engine(GEE)是由谷歌、卡内基梅隆大学、美国地质调查局(USGS)共同开发的用以处理卫星遥感影像数据和其他地球观测数据的云端运算平台。

GEE平台融合了谷歌服务器提供的强大计算能力或者以及大范围的云计算资源,平台数据集提供了对地观测卫星大量完整的影像数据如Sentinel, MODIS,Landsat等,也提供了植被、地表温度和社会经济等数据集,并能做到数据库每天更新。GEE提供了Python和JavaScript版的编辑界面(API),使用基于Web的代码编辑器进行快速、交互式算法开发。它有一个特别突出的优点,那就是数据量庞大,可以在线调用,数据来源广泛,不需要按照不同的数据去不同的来源网站搜索下载。更不需要占用自己电脑的内存,在线云计算。

相比于ENVI等传统的遥感影像处理工具,GEE在处理海量遥感数据方面具有不可比拟的优势,一方面提供了丰富的计算资源,另一方面其巨大的云存储节省了科研人员大量的数据下载和预处理的时间,是遥感数据的计算和分析可视化方面代表世界该领域最前沿水平,是遥感领域的一次革命。

灾害、水体及湿地领域案例及实践

点此查看详情


· GEE平台及典型应用案例介绍;

· GEE开发环境及常用数据资源介绍;

· ChatGPT、文心一言等GPT模型介绍

· JavaScript基础简介;

· GEE遥感云重要概念与典型数据分析流程;

GEE基本对象介绍、矢量和栅格对象可视化、属性查看,API查询、基本调试等平台上手。

GEE基础知识与ChatGPT等AI模型交互

· 影像基本运算与操作:数学运算、关系/条件/布尔运算、形态滤波、纹理特征提取;影像掩码、裁剪和镶嵌等;

· 要素基本运算与操作:几何缓冲区,交、并、差运算等;

· 集合对象操作:循环迭代(map/iterate)、合并Merge、联合(Join);

· 数据整合Reduce:包括影像与影像集整合,影像合成、影像区域统计与域统计,分组整合与区邻域统计,影像集线性回归分析等;

· 机器学习算法:包括监督(随机森林、CART、SVM、决策树等)与非监督(wekaKMeans、wekaLVQ等)分类算法,分类精度评估等;

· 数据资产管理:包括本地端矢量和栅格数据上传、云端矢量和栅格数据下载、统计结果数据导出等;

· 绘图可视化:包括条形图、直方图、散点图、时间序列等图形绘制。

演示,包括辅助答疑、代码生成与修正等技巧。

重要知识点微型案例串讲与GPT模型交互演示

1) Landsat、Sentinel-2影像批量自动去云和阴影

2) 联合Landsat和Sentinel-2批量计算植被指数和年度合成

3) 研究区可用影像数量和无云观测数量统计分析

4) 中国区域年度NDVI植被数合成及年度最绿DOY时间查找

5) 时间序列光学影像数据的移动窗口平滑

6) 分层随机抽样及样本导出、样本本地评估与数据上传云端

中国近40年降雨量变化趋势分析

洪涝灾害监测

基于Sentinel-1 雷达等影像,以典型洪涝灾害为例监测受灾区域。案例内容包括多源影像数据处理和不同水体识别算法构建,如OSTU全局自动分割与局部自适应阈值法,以及采用不同方式确定受灾区域,受灾面积统计与可视化输出等。

洪水敏感性和风险模拟

结合ESA10m分辨率土地覆盖产品、地形(海拔与坡度)、MERIT全球水文数据、JRC地表水数据产品等空间数据集,借助云平台计算不同地类与开阔水域的距离,最近排水系统上方的高度 (HAND) 和降雨频率(降雨强度和持续时间的代表)作为模拟洪灾敏感性的输入参数,再应用加权线性组合WLC方法绘制洪灾敏感性分布图。内容涉及不同数据产品再分类分级、欧几里得距离计算、影像集map循环和分析建模等。

水体质量监测

联合近十年的Landsat 8/9、JRC地表水产品,使用如NDSSI归一化差异悬浮泥沙指数、NDTI归一化差分浊度指数等来监测水集水区水质变化情况,统计集水区域逐月水质变化情况。内容涉及时间序列影像预处理、植被指数计算、逐月逐年影像合成、影像集Reducer操作、空值过滤与作图等

河道轮廓监测

展示Earth Engine在河流水文学和地貌学中的应用。具体演示如何使用云平台区分河流和其它水体,进行基本的形态分析,提取河流的中心线和宽度,检测河流形态随时间的变化。内容涉及开源程序包调用、RivWidthCloud关键代码解读、时间序列影像处理、水体遥感识别和数据导出。

地下水变化监测

详细介绍了利用GRACE重力卫星的观测数据来评估大型河流流域地下水储量的变化,包括应用遥感估计的总蓄水异常、陆地表面模型输出GLDAS和现场观测结果来解决地下水蓄不变化。内容涉及使用GRACE绘制总蓄水量变化、蓄水趋势和解决河流流域地下水储量的变化等,练习知识点包括影像集过滤、集合Join、map循环、趋势分析、可视化等。


红树林遥感制图

联合Sentinel-1/2多源遥感影像和机器学习算法绘制红树林分布图。专题涉及光学和雷达数据处理、机器学习算法应用、反演精度评估、变量重要性分析、结果可视化、栅格与矢量转换等内容,将演示如何利用红树林的生境特征信息(如地形、与大海相连等)对分类结果进行精细处理,实现高精度分布图的绘制。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/20388.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

换零钱II:Python代码解Java题目

银行现存零钱面值种类动态变化但数量无限,类方法change()完成指定金额的最少零钱个数兑换。 (本笔记适合学透python基本数据结构,熟悉class的基构造,对类内全局变量有一定认的 coder 翻阅) 【学习的细节是欢悦的历程】 Python 官网&#xff1…

从CPU缓存结构到原子操作

文章目录 一、CPU缓存结构1.1 CPU的多级缓存1.2 Cache Line 二、写回策略三、缓存一致性问题及解决方案3.1 缓存一致性问题3.2 解决方案3.2.1 总线嗅探3.2.2 事务的串行化3.2.3 MESI 四、原子操作4.1 什么是原子操作4.2 c 标准库的原子类型4.2.1 atomic<T\>4.2.2 is_lock…

这款语音同声翻译软件为你提供智能翻译体验

林娜&#xff1a;嘿&#xff0c;你知道吗&#xff1f;现在有很多语音翻译软件可以帮助我们进行实时的语言翻译&#xff01; 罗伟&#xff1a;真的吗&#xff1f;有什么语音翻译软件呢&#xff1f;能告诉我一些详情吗&#xff1f; 林娜&#xff1a;当然&#xff0c;接下来我将…

SpringBoot+JWT实现单点登录解决方案

一、什么是单点登录? 单点登录是一种统一认证和授权机制&#xff0c;指在多个应用系统中&#xff0c;用户只需要登录一次就可以访问所有相互信任的系统&#xff0c;不需要重新登录验证。 单点登录一般用于互相授信的系统&#xff0c;实现单一位置登录&#xff0c;其他信任的…

AI热潮中的黑马:曾经的显卡制造商是如何跻身AI巨头之列的?

导读&#xff1a;在芯片行业的风云变幻中,英伟达如何从一家显卡制造商翻身成为AI巨头?面对行业迭代速度极快、激烈竞争和显著的高成本特点,英伟达是如何构建属于自己的护城河,又是如何突破技术瓶颈,跑在前列的呢?他们是如何将"摩尔定律"推进到更高阶段创造出属于自…

性能测试工具 Jmeter 测试 Dubbo 接口脚本编写

目录 前言&#xff1a; 1、背景 2、工具准备 3、创建一个 maven 项目&#xff0c;此处可以创建一个 quickstart&#xff0c;参考截图 4、以上配置完毕后&#xff0c;开始撸代码 5、上面那个类是不需要从 jmeter 中获取参数&#xff0c;如果要从 jmeter 中获取相关的参数&…

bio、nio、aio、io多路复用

BIO-同步阻塞IO NIO-同步非阻塞IO 不断的重复发起IO系统调用&#xff0c;这种不断的轮询&#xff0c;将会不断地询问内核&#xff0c;这将占用大量的 CPU 时间&#xff0c;系统资源利用率较低 IO多路复用模型-异步阻塞IO IO多路复用模型&#xff0c;就是通过一种新的系统调用&a…

实现跨语言互动:如何在Python中调用Java的JavaParser库解析Java源代码

1、背景 在多语言开发环境中&#xff0c;我们经常需要进行跨语言的操作。有时&#xff0c;我们可能会在Python环境下需要使用Java的库或者功能。这个博客将展示如何在Python中调用Java的JavaParser库来解析Java源代码。 2、需求 在许多软件开发场景中&#xff0c;我们可能需…

如何在MySQL中安装示例数据库sakila

就像 SQLServer 示例数据库一样,MySQL 也有示例数据库,比如sakila;Sakila 数据库最初由 MySQL AB 文档团队的前成员 Mike Hillyer 开发,旨在提供一个标准模式,可用于书籍、教程、文章、示例等中的示例,它包含示例视图、存储过程和触发器。 以下是在服务器上安装sakila数…

【NLP】使用 LSA、PLSA、LDA 和 lda2Vec 进行主题建模

一、说明 本文是对主题建模及其相关技术的更新全面概述。在自然语言理解&#xff08;NLU&#xff09;任务中&#xff0c;有一个镜头层次结构&#xff0c;通过它我们可以提取含义 - 从单词到句子到段落到文档。在文档级别&#xff0c;理解文本的最有用方法之一是分析其主题&…

springboot 集成Druid的监控数据库连接池的最佳实践

免费的chatgpt福利送上 http://124.220.104.235:31105/web/chatgpt 1.数据库连接池介绍 1.1JDBC数据库连接池的必要性 在使用开发基于数据库的web程序时&#xff0c;传统的模式基本是按以下步骤 在主程序&#xff08;如servlet、beans&#xff09;中建立数据库连接 进行sql…

第6章 NVMe 介绍 6.1-6.3

6.1 AHCI 到 NVMe AHCI协议。NVMe协议。 HDD 和早期的 SSD 绝大多数都是使用SATA接口&#xff0c;跑的是AHCI&#xff0c;它是一种系统接口标准。 后来&#xff0c;AHCI 和 SATA 不能满足高性能和低时延 SSD 的需求&#xff0c;SSD 需要更快、更高效的协议和接口。因此 NVMe 出…