t检验(连续变量)和卡方检验(分类变量)

目录

情形

不同种类的萼片差异

数据类型查看:

差异分析:

不同萼片的种类差异

数据准备

二分类卡方检验

绘图


情形

:当有两列数据进行分析比较时,一列为连续变量,一列数据为分类变量。

rm(list = ls()) 
library(ggplot2)
library(ggpubr)
library(cowplot)
data <- iris##鸢尾花数据集
data1 <- data[,c(1,5)]
data2 <- data1[data1$Species=="setosa"|data1$Species=="versicolor",]
##提取鸢尾花数据集的部分数据进行分析

如下整理鸢尾花部分数据:“Sepal.Length”是连续变量,“Species”只选择了两种数据。

分析两列数据:2种情况

①比较不同种类的萼片长度是否存在差异。

②比较不同萼片长度的种类是否存在差异。

不同种类的萼片差异

数据类型查看:

数据分布检测:第六讲 R-数据正态分布检验 - 知乎 (zhihu.com)

#①比较不同种类的萼片长度是否存在差异。
#分析方法选择
shapiro.test(data2$Sepal.Length)
#W = 0.96964, p-value = 0.02076 不符合正太分布#密度图
ggdensity(data2$Sepal.Length, main = "Density plot of sepal length",xlab = "sepal length")
#正态性测试对样本量敏感。小样本最常通过正态性测试。
#因此,重要的是将外观检查和显着性测试相结合以做出正确的决定
#综合分析也可以采用t检验

数据分布情况

差异分析:
#pdf("plot.pdf",width = 4,height = 4)##保存图片
p <- ggplot(na.omit(data2), aes(x = Species, y = Sepal.Length, fill = Species)) + geom_boxplot(aes(col = Species)) + scale_fill_manual(values = alpha(c("#3C6FAC","grey50"),0.8)) + scale_color_manual(values = c("#3C6FAC","grey50")) + xlab("Species") + ##X轴名称ylab("") + theme_bw() +#主题设置 theme(legend.position = "top",#添加图例#legend.title = "Species",#legend.key.size = unit(0.5, "cm"),#缩小图例大小axis.text.x = element_blank(),axis.text.y = element_blank(),axis.ticks = element_blank(),panel.border = element_blank(),panel.grid = element_blank(),panel.background = element_blank(),axis.title = element_text(size = 10),axis.text = element_text(size = 10)) + stat_compare_means(method = "t.test", #wilcox.test(检验方法选择)label = "p.signif",#展示星标** label.y = max(na.omit(data2$Sepal.Length)) * 0.95, label.x = 1.5, size = 8)
p

不同萼片的种类差异

将萼片长度分为二分类变量(如:长短),然后分析不同萼片组的种类是否存在差异

数据准备
##数据准备
rm(list = ls()) 
library(ggplot2)
library(ggpubr)
library(cowplot)
data <- iris##鸢尾花数据集
data1 <- data[,c(1,5)]
data2 <- data1[data1$Species=="setosa"|data1$Species=="versicolor",]#②不同萼片长度的种类是否存在差异
data3 <- data2[order(data2$Sepal.Length),]
#计算分割点(进行二分类设置)
point <- round(nrow(data3) / 2)##几分之几,自己设置
data3$SepalLength[1:point] <-"Low" 
data3$SepalLength[point:nrow(data3)] <-"High" #详情
table(data3$Species,data3$SepalLength)High Low
setosa        6  44
versicolor   45   5
virginica     0   0

二分类卡方检验

R语言卡方检验最全总结_医学和生信笔记的博客-CSDN博客

R语言—卡方检验 - 知乎 (zhihu.com)

R=C=2时四格表卡方检验

当 n(样本量)≥40 且所有的T(期望频数)≥5时,用χ2检验的基本公式或四格表资料之χ2检验的专用公式;当P ≈ α时,改用四格表资料的 Fisher 确切概率法;
当 n≥40 但有 1≤T<5 时,用四格表资料χ2检验的校正公式,或改用四格表资料的 Fisher 确切概率法。
当 n<40,或 T<1时,用四格表资料的 Fisher 确切概率法。

#生成二维列联表
mytable <- table(data3$Species,data3$SepalLength)
mytable1 <-mytable[c(1,2),]##需要去除列联表中并没有的第三列(否则不能计算)
chisq.test(mytable1,correct = F) # 和SPSS一样
#结果:X-squared = 64, df = 1, p-value = 1.244e-15
#data3$Species,data3$SepalLength顺序不影响结果
绘图

比例计算

##绘制堆砌图并展示结果
#表格汇总结果(为了展示比例)
result <- data3 %>% group_by(Species, SepalLength) %>%summarize(count = n()) %>%mutate(proportion = count / sum(count))
print(result)# 输出结果
result <- as.data.frame(result)
result$proportion <- round(result$proportion*100,1)#保留1位小数
dat01 <- result[c(3,4),]#提取需要展示的数值的行(需要匹配X轴)

完整图

#pdf("plot.pdf",width = 4,height = 4)##保存图片
ggplot(data3,aes(x=SepalLength,#X轴fill=Species))+geom_bar(position = "fill")+scale_y_continuous(expand = expansion(mult=c(0.01,0.1)),##展示百分比labels = scales::percent_format())+scale_fill_manual(values = c("setosa"="#98d09d","versicolor"="#dadada"),##根据需求修改配色limits=c("setosa","versicolor"))+theme_set(theme_bw())+theme(panel.grid = element_blank())+#不展示网格线geom_text(data=dat01,##展示比例aes(x=SepalLength,y=0.05,#设置Y轴展示的位置label=paste0(dat01$proportion)),##展示的是比例inherit.aes = FALSE,vjust=-0.2)+geom_text(aes(x = 1.5, y = 1.1,#调整文本注释位置label = "p-value 1.244e-15"))+#添加P(前面计算)labs(title = "AAABBB",#标题x="SepalLength",y="Species")
dev.off()

更多绘图细节

ggplot2作图最全教程(上) - 知乎 (zhihu.com)

ggplot2作图最全教程(下) - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/205890.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(01)vite 从启动服务器开始

文章目录 前言在浏览器中使用es模块初始化环境vite依赖预构建解决了什么问题创建vite.config.js配置vite为什么vite.config.js可以用esmodule规范 前言 Vite&#xff08;发音为"veet"&#xff09;是一种现代化的前端构建工具&#xff0c;旨在提供快速的开发体验。它…

如何最大化客户生命周期价值?APMDR 模型在袋鼠云的落地实践

相信大家都认可一个观点&#xff1a;不论是 To B 还是 To C&#xff0c;用户是企业的核心资源&#xff0c;是互联网产品中最重要的价值之一。因此&#xff0c;深入挖掘用户价值成为现在大部分企业运营的关键。 之前我们为大家介绍过如何利用 RFM 模型让企业聚焦于更有价值的用…

双12电视盒子推荐:测评员解析目前电视盒子哪个最好

电视盒子不需要每月缴费&#xff0c;只需联网就可以收看海量视频资源&#xff0c;游戏、网课、投屏等功能让电视盒子的使用场景更丰富&#xff0c;我每年都会进行数十次电视盒子测评&#xff0c;本期要分享的是双十二电视盒子推荐&#xff0c;全面解析目前电视盒子哪个最好。 一…

NC65 修改元数据字段长度

NC65 修改元数据字段长度&#xff0c;执行下面sql&#xff0c;执行完后需要重启NC服务才生效。 --属性 update md_property set attrlength 200 where name fphm and classidece96dd8-bdf8-4db3-a112-9d2f636d388f ;--列 update md_column set columnlength 200 where tab…

系列六、ThreadLocal内存泄漏案例

一、内存泄漏 vs 内存溢出 内存泄漏&#xff1a;内存泄漏是指程序中已经动态分配的堆内存由于某种原因程序未释放或者无法释放&#xff0c;造成系统内存的浪费&#xff0c;导致程序运行速度减慢甚至导致系统崩溃等严重后果&#xff0c;内存泄漏最终 会导致内…

docker报错standard init linux.go:228 exec user process caused: exec format error

1、报错 使用Dockerfile自己做的服务镜像&#xff0c;docker run时启动失败&#xff0c;报错如下&#xff1a; standard init linux.go:228 exec user process caused: exec format error2、原因一 当前服务器的CPU架构和构建镜像时的CPU架构不兼容。比如做镜像是在arm机器下…

微服务学习|Feign:快速入门、自定义配置、性能优化、最佳实践

RestTemplate方式调用存在的问题 先来看我们以前利用RestTemplate发起远程调用的代码 存在下面的问题 代码可读性差&#xff0c;编程体验不统一 参数复杂URL难以维护 Feign的介绍 Feign是一个声明式的http客户端&#xff0c;官方地址: https://github.com/OpenFeign/feign …

Java-Object类

Object类 所有类都直接或间接的继承自Object类&#xff0c;Object类是所有Java类的根基类。 也就意味着所有的Java对象都拥有Object类的属性和方法。 如果在类的声明中未使用extends关键字指明其父类&#xff0c;则默认继承Object类。 toString()方法 【1】Object类的toStr…

最新AIGC创作系统ChatGPT网站源码,Midjourney绘画系统,支持最新GPT-4-Turbo模型,支持DALL-E3文生图

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如…

天天谈体验,为什么客户还是给差评?

相比于线上场景&#xff0c;线下门店在数字化上更加复杂困难。不过&#xff0c;线下空间自有其得天独厚的优势条件——客户可以在这里最大程度获取对产品乃至品牌调性的亲身体验。 线上商城或直播中的产品效果图是否与实物一致&#xff1f;品牌许诺的产品功能价值是否真的能实现…

ubuntu下docker环境使用GPU配置

本文主要讲述整个命令流程&#xff0c;具体讲解请看官网nvidia-容器工具包和一篇总结得很详细的博文docker使用GPU总结 docker的版本必须安装19.0版本以上的&#xff0c;这里也只讲19.0版本以上的使用方法 首先设置一下网络信息 curl -fsSL https://nvidia.github.io/libnvi…

QT mysql 数据库线程池 与数据库操作封装

最近事情比较多很久没有写学习笔记了&#xff0c;数据库线程池&#xff0c; 数据库封装&#xff0c;虽说数据库操作有很多不需要写sql 的&#xff0c;ORM 封装的方式去操作数据库。但是从业这些年一直是自己动手写sql &#xff0c;还是改不了这个习惯。不说了直接上代码。 数据…