[点云分割] 条件欧氏聚类分割

介绍

条件欧氏聚类分割是一种基于欧氏距离和条件限制的点云分割方法。它通过计算点云中点与点之间的欧氏距离,并结合一定的条件限制来将点云分割成不同的区域或聚类。

在条件欧氏聚类分割中,通常会定义以下两个条件来判断两个点是否属于同一个聚类:

  1. 距离条件:两个点之间的欧氏距离是否小于设定的阈值。如果两个点之间的距离小于阈值,则认为它们是相邻的,属于同一个聚类。

  2. 条件限制:除了距离条件外,还可以根据其他的条件来限制聚类的形成。例如,可以限制点的法线方向、颜色、强度等属性的相似性,只有当这些属性满足一定的条件时,两个点才被认为是相邻的,属于同一个聚类。

条件欧氏聚类分割的步骤通常包括以下几个步骤:

  1. 初始化:设置距离阈值和其他条件限制的参数。

  2. 遍历点云:对于点云中的每个点,依次进行以下操作:

    • 计算当前点与其周围点之间的欧氏距离。

    • 根据距离条件和其他条件限制,判断当前点是否与周围点属于同一个聚类。如果是,则将它们标记为同一个聚类。

    • 继续遍历其他未被标记的点,重复上述操作,直到所有点都被遍历完。

  3. 输出聚类结果:将同一个聚类的点标记为一组,形成不同的聚类簇。

效果

代码

#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/time.h>#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/segmentation/conditional_euclidean_clustering.h>typedef pcl::PointXYZI PointTypeIO;
typedef pcl::PointXYZINormal PointTypeFull;bool enforceIntensitySimilarity (const PointTypeFull& point_a, const PointTypeFull& point_b, float /*squared_distance*/){if (std::abs (point_a.intensity - point_b.intensity) < 5.0f)return (true);elsereturn (false);}bool enforceNormalOrIntensitySimilarity (const PointTypeFull& point_a, const PointTypeFull& point_b, float /*squared_distance*/)
{// 将点云的法线信息转换未Eigen库的Eigen:vector3f类型Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.getNormalVector3fMap (), point_b_normal = point_b.getNormalVector3fMap ();// 判断点云A的点云B的强度差是否小于5.0if (std::abs (point_a.intensity - point_b.intensity) < 5.0f)return (true);// 判断点云A和点云B的法线夹角的余弦值是否大于30°对应的余弦值,即判断法线相似性if (std::abs (point_a_normal.dot (point_b_normal)) > std::cos (30.0f / 180.0f * static_cast<float> (M_PI)))return (true);return (false);
}bool customRegionGrowing (const PointTypeFull& point_a, const PointTypeFull& point_b, float squared_distance)
{Eigen::Map<const Eigen::Vector3f> point_a_normal = point_a.getNormalVector3fMap (), point_b_normal = point_b.getNormalVector3fMap ();// 根据平方距离的大小,判断生长条件if (squared_distance < 10000){if (std::abs (point_a.intensity - point_b.intensity) < 8.0f)return (true);if (std::abs (point_a_normal.dot (point_b_normal)) > std::cos (30.0f / 180.0f * static_cast<float> (M_PI)))return (true);}else{if (std::abs (point_a.intensity - point_b.intensity) < 3.0f)return (true);}return (false);
}int main ()
{// Data containers usedpcl::PointCloud<PointTypeIO>::Ptr cloud_in (new pcl::PointCloud<PointTypeIO>), cloud_out (new pcl::PointCloud<PointTypeIO>);pcl::PointCloud<PointTypeFull>::Ptr cloud_with_normals (new pcl::PointCloud<PointTypeFull>);pcl::IndicesClustersPtr clusters (new pcl::IndicesClusters), small_clusters (new pcl::IndicesClusters), large_clusters (new pcl::IndicesClusters);pcl::search::KdTree<PointTypeIO>::Ptr search_tree (new pcl::search::KdTree<PointTypeIO>);pcl::console::TicToc tt;// Load the input point cloudstd::cerr << "Loading...\n", tt.tic ();pcl::io::loadPCDFile ("Statues_4.pcd", *cloud_in);std::cerr << ">> Done: " << tt.toc () << " ms, " << cloud_in->size () << " points\n";// Downsample the cloud using a Voxel Grid classstd::cerr << "Downsampling...\n", tt.tic ();pcl::VoxelGrid<PointTypeIO> vg;vg.setInputCloud (cloud_in);vg.setLeafSize (80.0, 80.0, 80.0);vg.setDownsampleAllData (true);vg.filter (*cloud_out);std::cerr << ">> Done: " << tt.toc () << " ms, " << cloud_out->size () << " points\n";// Set up a Normal Estimation class and merge data in cloud_with_normalsstd::cerr << "Computing normals...\n", tt.tic ();pcl::copyPointCloud (*cloud_out, *cloud_with_normals);pcl::NormalEstimation<PointTypeIO, PointTypeFull> ne;ne.setInputCloud (cloud_out);ne.setSearchMethod (search_tree);ne.setRadiusSearch (300.0);ne.compute (*cloud_with_normals);std::cerr << ">> Done: " << tt.toc () << " ms\n";// Set up a Conditional Euclidean Clustering classstd::cerr << "Segmenting to clusters...\n", tt.tic ();pcl::ConditionalEuclideanClustering<PointTypeFull> cec (true);cec.setInputCloud (cloud_with_normals);cec.setConditionFunction (&customRegionGrowing);cec.setClusterTolerance (500.0);cec.setMinClusterSize (cloud_with_normals->size () / 1000);cec.setMaxClusterSize (cloud_with_normals->size () / 5);cec.segment (*clusters);cec.getRemovedClusters (small_clusters, large_clusters);std::cerr << ">> Done: " << tt.toc () << " ms\n";// Using the intensity channel for lazy visualization of the outputfor (const auto& small_cluster : (*small_clusters))for (const auto& j : small_cluster.indices)(*cloud_out)[j].intensity = -2.0;for (const auto& large_cluster : (*large_clusters))for (const auto& j : large_cluster.indices)(*cloud_out)[j].intensity = +10.0;for (const auto& cluster : (*clusters)){int label = rand () % 8;for (const auto& j : cluster.indices)(*cloud_out)[j].intensity = label;}// Save the output point cloudstd::cerr << "Saving...\n", tt.tic ();pcl::io::savePCDFile ("output.pcd", *cloud_out);std::cerr << ">> Done: " << tt.toc () << " ms\n";return (0);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/207145.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

对接苹果支付退款退单接口

前言 一般而言&#xff0c;我们其实很少对接退款接口&#xff0c;因为退款基本都是商家自己决定后进行操作的&#xff0c;但是苹果比较特殊&#xff0c;用户可以直接向苹果发起退款请求&#xff0c;苹果觉得合理会退给用户&#xff0c;但是目前公司业务还是需要对接这个接口&am…

josef约瑟 电压继电器DJ-132 100~200V柜内板前接线,带附件

DJ-100系列电压继电器 DJ-111电压继电器&#xff1b; DJ-112电压继电器&#xff1b; DJ-121电压继电器&#xff1b; DJ-122电压继电器&#xff1b; DJ-131电压继电器&#xff1b; DJ-132电压继电器&#xff1b; DJ-131/60C电压继电器&#xff1b; DJ-131/60CN电压继电器…

csdn最新最全pytest系列——pytest-xdist插件之多进程运行测试用例|| pytest-parallel插件之多线程运行测试用例

pytest之多进程运行测试用例(pytest-xdist) 前言 平常我们功能测试用例非常多时&#xff0c;比如有1千条用例&#xff0c;假设每个用例执行需要1分钟&#xff0c;如果单个测试人员执行需要1000分钟才能跑完当项目非常紧急时&#xff0c;会需要协调多个测试资源来把任务分成两部…

开源之夏 2023 | Databend 社区项目总结与分享

开源之夏是由中科院软件所“开源软件供应链点亮计划”发起并长期支持的一项暑期开源活动&#xff0c;旨在鼓励在校学生积极参与开源软件的开发维护&#xff0c;培养和发掘更多优秀的开发者&#xff0c;促进优秀开源软件社区的蓬勃发展&#xff0c;助力开源软件供应链建设。 官…

2022年06月 Scratch(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 角色初始位置如图所示,下面哪个选项能让角色移到舞台的左下角? A: B: C: D: </

postman设置接口关联这样做,薪资直接涨3k

postman设置接口关联 在实际的接口测试中&#xff0c;后一个接口经常需要用到前一个接口返回的结果&#xff0c; 从而让后一个接口能正常执行&#xff0c;这个过程的实现称为关联。 在postman中实现关联操作的步骤如下&#xff1a; 1、利用postman获取上一个接口指定的返回值…

【C++】类和对象——构造函数和析构函数

今天要学习两个特殊的函数&#xff0c;分别是构造函数和析构函数&#xff0c;它们究竟有什么用呢&#xff1f; 比如说&#xff0c;我们先写一个简单的日期的类 class Date { public:void Init() {_year 1;_month 1;_day 1;}void Print() {cout << _year << &qu…

java.lang.IllegalStateException: Can not add resource

安卓解决 java.lang.IllegalStateException: Can not add resource 放两个链接 解决Can not add resource (com.android.aaptcompiler.ParsedResourcea980fbb) to table_言并肃的博客-CSDN博客 android attr何时会冲突_android attr冲突-CSDN博客 然后去新增的依赖找资源…

IOS+Appium+Python自动化全实战教程

由于公司的产品坐落于不同的平台&#xff0c;如ios、mac、Android、windows、web。因此每次有新需求的时候&#xff0c;开发结束后&#xff0c;留给测试的时间也不多。此外&#xff0c;一些新的功能实现&#xff0c;偶尔会影响其他的模块功能正常的使用。 网上的ios自动化方面的…

jQuery的学习(一篇文章齐全)

目录 Day29 jQuery 1、jQuery介绍 2、jQuery的选择器 2.1、直接查找 2.2、导航查找 3、jQuery的绑定事件 案例1&#xff1a;绑定取消事件 案例2&#xff1a;模拟事件触发 4、jQuery的操作标签 tab切换案例jQuery版本&#xff1a; 案例1&#xff1a; 案例2&#xff…

Spring cloud - Hystrix源码

其实只是Hystrix初始化部分&#xff0c;我们从源码的角度分析一下EnableCircuitBreaker以及HystrixCommand注解的初始化过程。 从EnableCircuitBreaker入手 我们是通过在启动类添加EnableCircuitBreaker注解启用Hystrix的&#xff0c;所以&#xff0c;源码解析也要从这个注解…