矩阵论(Matrix)

大纲

  • 矩阵微积分:多元微积分的一种特殊表达,尤其是在矩阵空间上进行讨论的时候
  • 逆矩阵(inverse matrix)
  • 矩阵分解:特征分解(Eigendecomposition),又称谱分解(Spectral decomposition);LU分解;奇异值分解(singular value decomposition);QR分解;科列斯基分解
  • 矩阵行列式(Determinant):在欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响
  • 特征向量(eigenvector) A v = λ v Av=\lambda v Av=λv,其中 λ \lambda λ特征值 v v v A A A的特征向量, A A A的所有特征值的全体叫 A A A的谱,记为 λ ( A ) \lambda(A) λ(A)
  • 迹(trance) tr ⁡ ( A ) = A 1 , 1 + ⋯ + A n , n \operatorname{tr}(\mathbf{A}) = \mathbf{A}_{1, 1} + \cdots + \mathbf{A}_{n, n} tr(A)=A1,1++An,n,一个矩阵的迹是其特征值的总和
  • 正交矩阵(orthogonal matrix):是一个方阵,其行向量與列向量皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵。 Q Q T = I QQ^T=I QQT=I
  • 正定矩阵和半正定矩阵(positive semi-definite matrix):一个 n × n n\times n n×n 的实对称矩阵 M M M 是正定的,当且仅当对于所有的非零实系数向量 z \mathbf {z} z,都有 z T M z > 0 \mathbf {z} ^{T}M\mathbf {z} >0 zTMz>0。其中 z T \mathbf {z} ^{T} zT表示 z \mathbf {z} z 的转置
  • 伴随矩阵(adjugate matrix):如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数
  • 共轭矩阵(又叫Hermite矩阵):矩阵本身先转置再把矩阵中每个元素取共轭(虚部变号的运算)得到的矩阵
  • 共轭转置(conjugate transpose or Hermitian transpose) A ∗ = ( A ‾ ) T = A T ‾ A^* = (\overline{A})^\mathrm{T} = \overline{A^\mathrm{T}} A=(A)T=AT, A ‾ \overline{A} A表示对矩阵A元素取复共轭
  • 酉矩阵(又叫幺正矩阵,unitary matrix):指其共轭转置恰为其逆矩阵的复数方阵, U ∗ U = U U ∗ = I n U^{*}U=UU^{*}=I_{n} UU=UU=In
  • 实对称矩阵:元素都为实数的对称矩阵
  • 对角矩阵(diagonal matrix):一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,…,an)
  • 雅可比矩阵(Jacobian matrix) J = [ ∂ f ∂ x 1 ⋯ ∂ f ∂ x n ] = [ ∂ f 1 ∂ x 1 ⋯ ∂ f 1 ∂ x n ⋮ ⋱ ⋮ ∂ f m ∂ x 1 ⋯ ∂ f m ∂ x n ] \mathbf {J} ={\begin{bmatrix}{\dfrac {\partial \mathbf {f} }{\partial x_{1}}}&\cdots &{\dfrac {\partial \mathbf {f} }{\partial x_{n}}}\end{bmatrix}}={\begin{bmatrix}{\dfrac {\partial f_{1}}{\partial x_{1}}}&\cdots &{\dfrac {\partial f_{1}}{\partial x_{n}}}\\\vdots &\ddots &\vdots \\{\dfrac {\partial f_{m}}{\partial x_{1}}}&\cdots &{\dfrac {\partial f_{m}}{\partial x_{n}}}\end{bmatrix}} J=[x1fxnf]= x1f1x1fmxnf1xnfm
  • 黑塞矩阵(又叫海森矩阵,Hessian matrix):由多变量实值函数的所有二阶偏导数组成的方阵, H i j = ∂ 2 f ∂ x i ∂ x j \mathbf {H} _{ij}={\frac {\partial ^{2}f}{\partial x_{i}\partial x_{j}}} Hij=xixj2f
  • 矩阵范数(matrix norm)

一、矩阵微积分

向量对向量的偏导称 Jacobian Matrix:
J = ∂ y ( n ) ∂ x ( m ) = ( ∂ y 1 ∂ x 1 ⋯ ∂ y 1 ∂ x m ⋮ ⋱ ⋮ ∂ y n ∂ x 1 ⋯ ∂ y n ∂ x m ) n × m J = \frac{\partial{y_{(n)}}}{\partial{x_{(m)}}} = \begin{pmatrix} \frac{\partial{y_1}}{\partial{x_1}} & \cdots & \frac{\partial{y_1}}{\partial{x_m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial{y_n}}{\partial{x_1}} & \cdots & \frac{\partial{y_n}}{\partial{x_m}} \end{pmatrix}_{n \times m} J=x(m)y(n)= x1y1x1ynxmy1xmyn n×m
标量对向量的偏导、向量对标量的偏导都是相应向量为一维的情况。
这里采用了称为分子布局的表示方法,另外还有将矩阵(向量)微积分表示为这里这种形式的转置的,称为分母布局。但用分母布局表示时,下面的运算法则没有这么好记的形式。

与标量微积分对比:

  • 加法法则不变 ∂ y + z ∂ x = ∂ y ∂ x + ∂ z ∂ x \frac{\partial{y + z}}{\partial{x}} = \frac{\partial{y}}{\partial{x}} + \frac{\partial{z}}{\partial{x}} xy+z=xy+xz

  • 链式法则不变 ∂ z ∂ x = ∂ z ∂ y ⋅ ∂ y ∂ x \frac{\partial{z}}{\partial{x}} = \frac{\partial{z}}{\partial{y}} \cdot \frac{\partial{y}}{\partial{x}} xz=yzxy

  • 乘法法则形式不变 ∂ y ⊗ z ∂ x = y ⊗ ∂ z ∂ x + z ⊗ ∂ y ∂ x \frac{\partial{y \otimes z}}{\partial{x}} = y \otimes \frac{\partial{z}}{\partial{x}} + z \otimes \frac{\partial{y}}{\partial{x}} xyz=yxz+zxy

    • 向量内积 ∂ y T z ∂ x = y T ⋅ ∂ z ∂ x + z T ⋅ ∂ y ∂ x \frac{\partial{y^Tz}}{\partial{x}} = y^T \cdot \frac{\partial{z}}{\partial{x}} + z^T \cdot \frac{\partial{y}}{\partial{x}} xyTz=yTxz+zTxy
    • 矩阵乘积(A 与 x 无关) ∂ A y ∂ x = A ⋅ ∂ y ∂ x \frac{\partial{Ay}}{\partial{x}} = A \cdot \frac{\partial{y}}{\partial{x}} xAy=Axy
    • 向量数乘(y 或 z 为标量) ∂ y z ∂ x = y ⋅ ∂ z ∂ x + z ⋅ ∂ y ∂ x \frac{\partial{yz}}{\partial{x}} = y \cdot \frac{\partial{z}}{\partial{x}} + z \cdot \frac{\partial{y}}{\partial{x}} xyz=yxz+zxy

∑ i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6} i=1ni2=6n(n+1)(2n+1)

1. 表示法

  • A , X , Y \mathbf{A}, \mathbf{X}, \mathbf{Y} A,X,Y 等:粗体的大写字母,表示一个矩阵
  • a , x , y \mathbf a, \mathbf x, \mathbf y a,x,y 等:粗体的小写字母,表示一个向量;
  • a , x , y a, x, y a,x,y 等:斜体的小写字母,表示一个标量;
  • X T \mathbf X^T XT:表示矩阵 X \mathbf X X 的转置;
  • X H \mathbf X^H XH:表示矩阵 X \mathbf X X 的共轭转置;
  • ∣ X ∣ | \mathbf X | X:表示方阵 X \mathbf X X 的行列式;
  • ∣ ∣ x ∣ ∣ || \mathbf x || ∣∣x∣∣:表示向量 x \mathbf x x 的范数;
  • I \mathbf I I:表示单位矩阵。

2. 向量微分

2.1 向量-标量

列向量函数 y = [ y 1 y 2 ⋯ y m ] T \mathbf y = \begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix}^T y=[y1y2ym]T 对标量 x x x 的导数称为 y \mathbf y y 的切向量,可以以 分子记法 表示为 ∂ y ∂ x = [ ∂ y 1 ∂ x ∂ y 2 ∂ x ⋮ ∂ y m ∂ x ] m × 1 \frac{\partial \mathbf y}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \newline \frac{\partial y_2}{\partial x} \newline \vdots \newline \frac{\partial y_m}{\partial x}\end{bmatrix}_{m \times 1} xy= xy1xy2xym m×1

若以 分母记法 则可以表示为 ∂ y ∂ x = [ ∂ y 1 ∂ x ∂ y 2 ∂ x ⋯ ∂ y m ∂ x ] 1 × m \frac{\partial \mathbf y}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} & \frac{\partial y_2}{\partial x} & \cdots & \frac{\partial y_m}{\partial x}\end{bmatrix}_{1 \times m} xy=[xy1xy2xym]1×m

2.2 标量-向量

标量函数 y y y 对列向量 x = [ x 1 x 2 ⋯ x n ] T \mathbf x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T x=[x1x2xn]T 的导数可以以 分子记法 表示为 ∂ y ∂ x = [ ∂ y ∂ x 1 ∂ y ∂ x 2 ⋯ ∂ y ∂ x n ] 1 × n \frac{\partial y}{\partial \mathbf x} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \cdots & \frac{\partial y}{\partial x_n}\end{bmatrix}_{1 \times n} xy=[x1yx2yxny]1×n

若以 分母记法 则可以表示为 ∂ y ∂ x = [ ∂ y ∂ x 1 ∂ y ∂ x 2 ⋮ ∂ y ∂ x n ] n × 1 \frac{\partial y}{\partial \mathbf x} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \newline \frac{\partial y}{\partial x_2} \newline \vdots \newline \frac{\partial y}{\partial x_n}\end{bmatrix}_{n \times 1} xy= x1yx2yxny n×1

2.3 向量-向量

列向量函数 y = [ y 1 y 2 ⋯ y m ] T \mathbf y = \begin{bmatrix} y_1 & y_2 & \cdots & y_m \end{bmatrix}^T y=[y1y2ym]T 对列向量 x = [ x 1 x 2 ⋯ x n ] T \mathbf x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T x=[x1x2xn]T 的导数可以以 分子记法 表示为
∂ y ∂ x = [ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 ⋯ ∂ y 1 ∂ x n ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 ⋯ ∂ y 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ∂ y m ∂ x 2 ⋯ ∂ y m ∂ x n ] m × n \frac{\partial \mathbf y}{\partial \mathbf x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \newline \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \newline \vdots & \vdots & \ddots & \vdots \newline \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n} \newline\end{bmatrix}_{m \times n} xy= x1y1x1y2x1ymx2y1x2y2x2ymxny1xny2xnym m×n

若以 分母记法 则可以表示为
∂ y ∂ x = [ ∂ y 1 ∂ x 1 ∂ y 2 ∂ x 1 ⋯ ∂ y m ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ∂ x 1 ⋯ ∂ y m ∂ x 1 ⋮ ⋮ ⋱ ⋮ ∂ y 1 ∂ x 1 ∂ y 2 ∂ x 1 ⋯ ∂ y m ∂ x 1 ] n × m \frac{\partial \mathbf y}{\partial \mathbf x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} &\cdots & \frac{\partial y_m}{\partial x_1} \newline \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots &\frac{\partial y_m}{\partial x_1} \newline \vdots &\vdots & \ddots & \vdots \newline \frac{\partial y_1}{\partial x_1} &\frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \newline\end{bmatrix}_{n \times m} xy= x1y1x1y1x1y1x1y2x1y2x1y2x1ymx1ymx1ym n×m

3. 矩阵微分

1. 矩阵-标量

形状为 m × n m \times n m×n 的矩阵函数 Y \mathbf Y Y 对标量 x x x 的导数称为 Y \mathbf Y Y 的切矩阵,可以以 分子记法 表示为
∂ Y ∂ x = [ ∂ y 11 ∂ x ∂ y 12 ∂ x ⋯ ∂ y 1 n ∂ x ∂ y 21 ∂ x ∂ y 22 ∂ x ⋯ ∂ y 2 n ∂ x ⋮ ⋮ ⋱ ⋮ ∂ y m 1 ∂ x ∂ y m 2 ∂ x ⋯ ∂ y m n ∂ x ] m × n \frac{\partial \mathbf Y}{\partial x} = \begin{bmatrix} \frac{\partial y_{11}}{\partial x} & \frac{\partial y_{12}}{\partial x} & \cdots & \frac{\partial y_{1n}}{\partial x} \newline \frac{\partial y_{21}}{\partial x} & \frac{\partial y_{22}}{\partial x} & \cdots & \frac{\partial y_{2n}}{\partial x} \newline \vdots & \vdots & \ddots & \vdots \newline \frac{\partial y_{m1}}{\partial x} & \frac{\partial y_{m2}}{\partial x} & \cdots & \frac{\partial y_{mn}}{\partial x} \newline\end{bmatrix}_{m \times n} xY= xy11xy21xym1xy12xy22xym2xy1nxy2nxymn m×n

2. 标量-矩阵

标量函数 y y y 对形状为 p × q p \times q p×q 的矩阵 X \mathbf X X 的导数可以 分子记法 表示为

∂ y ∂ X = [ ∂ y ∂ x 11 ∂ y ∂ x 21 ⋯ ∂ y ∂ x p 1 ∂ y ∂ x 12 ∂ y ∂ x 22 ⋯ ∂ y ∂ x p 2 ⋮ ⋮ ⋱ ⋮ ∂ y ∂ x 1 q ∂ y ∂ x 2 q ⋯ ∂ y ∂ x p q ] q × p \frac{\partial y}{\partial \mathbf X} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{21}} & \cdots & \frac{\partial y}{\partial x_{p1}} \newline \frac{\partial y}{\partial x_{12}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{p2}} \newline \vdots & \vdots & \ddots & \vdots \newline \frac{\partial y}{\partial x_{1q}} & \frac{\partial y}{\partial x_{2q}} & \cdots & \frac{\partial y}{\partial x_{pq}} \newline\end{bmatrix}_{q \times p} Xy= x11yx12yx1qyx21yx22yx2qyxp1yxp2yxpqy q×p
若以 分母记法 则可以表示为
∂ y ∂ X = [ ∂ y ∂ x 11 ∂ y ∂ x 12 ⋯ ∂ y ∂ x 1 q ∂ y ∂ x 21 ∂ y ∂ x 22 ⋯ ∂ y ∂ x 2 q ⋮ ⋮ ⋱ ⋮ ∂ y ∂ x p 1 ∂ y ∂ x p 2 ⋯ ∂ y ∂ x p q ] p × q \frac{\partial y}{\partial \mathbf X} = \begin{bmatrix} \frac{\partial y}{\partial x_{11}} & \frac{\partial y}{\partial x_{12}} & \cdots & \frac{\partial y}{\partial x_{1q}} \newline \frac{\partial y}{\partial x_{21}} & \frac{\partial y}{\partial x_{22}} & \cdots & \frac{\partial y}{\partial x_{2q}} \newline \vdots & \vdots & \ddots & \vdots \newline \frac{\partial y}{\partial x_{p1}} & \frac{\partial y}{\partial x_{p2}} & \cdots & \frac{\partial y}{\partial x_{pq}} \newline\end{bmatrix}_{p \times q} Xy= x11yx21yxp1yx12yx22yxp2yx1qyx2qyxpqy p×q

4. 恒等式

以下各式中,无特别备注,默认被求导的复合函数的各因式皆不是求导变量的函数。

4.1. 向量-向量

表达式分子记法分母记法备注
∂ a ∂ x = \frac{\partial \mathbf a}{\partial \mathbf x} = xa= 0 \mathbf 0 0 0 \mathbf 0 0
∂ x ∂ x = \frac{\partial \mathbf x}{\partial \mathbf x} = xx= I \mathbf I I I \mathbf I I
∂ A x ∂ x = \frac{\partial \mathbf A \mathbf x}{\partial \mathbf x} = xAx= A \mathbf A A A T \mathbf A^T AT
∂ x T A ∂ x = \frac{\partial \mathbf x^T \mathbf A}{\partial \mathbf x} = xxTA= A T \mathbf A^T AT A \mathbf A A
∂ a u ∂ x = \frac{\partial a \mathbf u}{\partial \mathbf x} = xau= a ∂ u ∂ x a \frac{\partial \mathbf u}{\partial x} axu a ∂ u ∂ x a \frac{\partial \mathbf u}{\partial x} axu u = u ( x ) \mathbf u = \mathbf u(\mathbf x) u=u(x)
∂ v u ∂ x = \frac{\partial v \mathbf u}{\partial \mathbf x} = xvu= v ∂ u ∂ x + u ∂ v ∂ x v \frac{\partial \mathbf u}{\partial \mathbf x} + \mathbf u \frac{\partial v}{\partial \mathbf x} vxu+uxv v ∂ u ∂ x + ∂ v ∂ x u T v \frac{\partial \mathbf u}{\partial \mathbf x} + \frac{\partial v}{\partial \mathbf x} \mathbf u^T vxu+xvuT v = v ( x ) , u = u ( x ) v = v(\mathbf x), \mathbf u = \mathbf u(\mathbf x) v=v(x),u=u(x)
∂ A u ∂ x = \frac{\partial \mathbf A \mathbf u}{\partial \mathbf x} = xAu= A ∂ u ∂ x \mathbf A \frac{\partial \mathbf u}{\partial \mathbf x} Axu ∂ u ∂ x A T \frac{\partial \mathbf u}{\partial \mathbf x} \mathbf A^T xuAT u = u ( x ) \mathbf u = \mathbf u(\mathbf x) u=u(x)
∂ ( u + v ) ∂ x = \frac{\partial (\mathbf u + \mathbf v)}{\partial \mathbf x} = x(u+v)= ∂ u ∂ x + ∂ v ∂ x \frac{\partial \mathbf u}{\partial \mathbf x} + \frac{\partial \mathbf v}{\partial \mathbf x} xu+xv ∂ u ∂ x + ∂ v ∂ x \frac{\partial \mathbf u}{\partial \mathbf x} + \frac{\partial \mathbf v}{\partial \mathbf x} xu+xv u = u ( x ) , v = v ( x ) \mathbf u = \mathbf u(\mathbf x), \mathbf v = \mathbf v(\mathbf x) u=u(x),v=v(x)
∂ f ( g ( u ) ) ∂ x = \frac{\partial \mathbf f(\mathbf g(\mathbf u))}{\partial \mathbf x} = xf(g(u))= ∂ f ( g ) ∂ g ∂ g ( u ) ∂ u ∂ u ∂ x \frac{\partial \mathbf f(\mathbf g)}{\partial \mathbf g} \frac{\partial \mathbf g(\mathbf u)}{\partial \mathbf u} \frac{\partial \mathbf u}{\partial \mathbf x} gf(g)ug(u)xu ∂ u ∂ x ∂ g ( u ) ∂ u ∂ f ( g ) ∂ g \frac{\partial \mathbf u}{\partial \mathbf x} \frac{\partial \mathbf g(\mathbf u)}{\partial \mathbf u} \frac{\partial \mathbf f(\mathbf g)}{\partial \mathbf g} xuug(u)gf(g) u = u ( x ) \mathbf u = \mathbf u(\mathbf x) u=u(x)

4.2. 标量-向量

表达式分子记法分母记法备注
∂ a ∂ x = \frac{\partial a}{\partial \mathbf x} = xa= 0 T \mathbf 0^T 0T 0 \mathbf 0 0
∂ a u ∂ x = \frac{\partial a u}{\partial \mathbf x} = xau= a ∂ u ∂ x a \frac{\partial \mathbf u}{\partial \mathbf x} axu a ∂ u ∂ x a \frac{\partial \mathbf u}{\partial \mathbf x} axu u = u ( x ) u = u(\mathbf x) u=u(x)
∂ ( u + v ) ∂ x = \frac{\partial (u + v)}{\partial \mathbf x} = x(u+v)= ∂ u ∂ x + ∂ v ∂ x \frac{\partial u}{\partial \mathbf x} + \frac{\partial v}{\partial \mathbf x} xu+xv ∂ u ∂ x + ∂ v ∂ x \frac{\partial u}{\partial \mathbf x} + \frac{\partial v}{\partial \mathbf x} xu+xv u = u ( x ) , v = v ( x ) u = u(\mathbf x), v = v(\mathbf x) u=u(x),v=v(x)
∂ u v ∂ x = \frac{\partial u v}{\partial \mathbf x} = xuv= u ∂ v ∂ x + v ∂ u ∂ x u \frac{\partial v}{\partial \mathbf x} + v \frac{\partial u}{\partial \mathbf x} uxv+vxu u ∂ v ∂ x + v ∂ u ∂ x u \frac{\partial v}{\partial \mathbf x} + v \frac{\partial u}{\partial \mathbf x} uxv+vxu u = u ( x ) , v = v ( x ) u = u(\mathbf x), v = v(\mathbf x) u=u(x),v=v(x)
∂ f ( g ( u ) ) ∂ x = \frac{\partial f(g(u))}{\partial \mathbf x} = xf(g(u))= ∂ f ( g ) ∂ g ∂ g ( u ) ∂ u ∂ u ∂ x \frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf x} gf(g)ug(u)xu ∂ f ( g ) ∂ g ∂ g ( u ) ∂ u ∂ u ∂ x \frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf x} gf(g)ug(u)xu u = u ( x ) u = u(\mathbf x) u=u(x)
∂ ( u ⋅ v ) ∂ x = ∂ u T v ∂ x = \frac{\partial (\mathbf u \cdot \mathbf v)}{\partial \mathbf x} = \frac{\partial \mathbf u^T \mathbf v}{\partial \mathbf x} = x(uv)=xuTv= u T ∂ v ∂ x + v T ∂ u ∂ x \mathbf u^T \frac{\partial \mathbf v}{\partial \mathbf x} + \mathbf v^T \frac{\partial \mathbf u}{\partial \mathbf x} uTxv+vTxu ∂ v ∂ x u + ∂ u ∂ x v \frac{\partial \mathbf v}{\partial \mathbf x} \mathbf u + \frac{\partial \mathbf u}{\partial \mathbf x} \mathbf v xvu+xuv u = u ( x ) , v = v ( x ) \mathbf u = \mathbf u(\mathbf x), \mathbf v = \mathbf v(\mathbf x) u=u(x),v=v(x)
∂ ( u ⋅ A v ) ∂ x = ∂ u T A v ∂ x = \frac{\partial (\mathbf u \cdot \mathbf A \mathbf v)}{\partial \mathbf x} = \frac{\partial \mathbf u^T \mathbf A \mathbf v}{\partial \mathbf x} = x(uAv)=xuTAv= u T A ∂ v ∂ x + v T A T ∂ u ∂ x \mathbf u^T \mathbf A \frac{\partial \mathbf v}{\partial \mathbf x} + \mathbf v^T \mathbf A^T \frac{\partial \mathbf u}{\partial \mathbf x} uTAxv+vTATxu ∂ v ∂ x A T u + ∂ u ∂ x A v \frac{\partial \mathbf v}{\partial \mathbf x} \mathbf A^T \mathbf u + \frac{\partial \mathbf u}{\partial \mathbf x} \mathbf A \mathbf v xvATu+xuAv u = u ( x ) , v = v ( x ) \mathbf u = \mathbf u(\mathbf x), \mathbf v = \mathbf v(\mathbf x) u=u(x),v=v(x)
∂ ( a ⋅ u ) ∂ x = ∂ a T u ∂ x = \frac{\partial (\mathbf a \cdot \mathbf u)}{\partial \mathbf x} = \frac{\partial \mathbf a^T \mathbf u}{\partial \mathbf x} = x(au)=xaTu= a T ∂ u ∂ x \mathbf a^T \frac{\partial \mathbf u}{\partial \mathbf x} aTxu ∂ u ∂ x a \frac{\partial \mathbf u}{\partial \mathbf x} \mathbf a xua u = u ( x ) \mathbf u = \mathbf u(\mathbf x) u=u(x)
∂ b T A x ∂ x = \frac{\partial \mathbf b^T \mathbf A \mathbf x}{\partial \mathbf x} = xbTAx= b T A \mathbf b^T \mathbf A bTA A T b \mathbf A^T \mathbf b ATb
∂ x T A x ∂ x = \frac{\partial \mathbf x^T \mathbf A \mathbf x}{\partial \mathbf x} = xxTAx= x T ( A + A T ) \mathbf x^T (\mathbf A + \mathbf A^T) xT(A+AT) ( A + A T ) x (\mathbf A + \mathbf A^T) \mathbf x (A+AT)x
∂ 2 x T A x ∂ x ∂ x T = \frac{\partial^2 \mathbf x^T \mathbf A \mathbf x}{\partial \mathbf x \partial \mathbf x^T} = xxT2xTAx= A + A T \mathbf A + \mathbf A^T A+AT A + A T \mathbf A + \mathbf A^T A+AT
∂ a T x x T b ∂ x = \frac{\partial \mathbf a^T \mathbf x \mathbf x^T \mathbf b}{\partial \mathbf x} = xaTxxTb= x T ( a b T + b a T ) \mathbf x^T (\mathbf a \mathbf b^T + \mathbf b \mathbf a^T) xT(abT+baT) ( a b T + b a T ) x (\mathbf a \mathbf b^T + \mathbf b \mathbf a^T) \mathbf x (abT+baT)x
∂ ( A x + b ) T C ( D x + e ) ∂ x = \frac{\partial (\mathbf A \mathbf x + \mathbf b)^T \mathbf C (\mathbf D \mathbf x + \mathbf e)}{\partial \mathbf x} = x(Ax+b)TC(Dx+e)= ( A x + b ) T C D + ( D x + e ) T C T A (\mathbf A \mathbf x + \mathbf b)^T \mathbf C \mathbf D + (\mathbf D \mathbf x + \mathbf e)^T \mathbf C^T \mathbf A (Ax+b)TCD+(Dx+e)TCTA D T C T ( A x + b ) + A T C ( D x + e ) T \mathbf D^T \mathbf C^T(\mathbf A \mathbf x + \mathbf b) + \mathbf A^T \mathbf C (\mathbf D \mathbf x + \mathbf e)^T DTCT(Ax+b)+ATC(Dx+e)T
∂ ∣ ∣ x ∣ ∣ 2 ∂ x = ∂ ( x ⋅ x ) ∂ x = \frac{\partial || \mathbf x ||^2}{\partial \mathbf x} = \frac{\partial (\mathbf x \cdot \mathbf x)}{\partial \mathbf x} = x∣∣x2=x(xx)= 2 x T 2 \mathbf x^T 2xT 2 x 2 \mathbf x 2x
∂ ∣ ∣ x − a ∣ ∣ ∂ x = \frac{\partial || \mathbf x - \mathbf a || }{\partial \mathbf x} = x∣∣xa∣∣= ( x − a ) T ∣ ∣ x − a ∣ ∣ \frac{(\mathbf x - \mathbf a)^T}{ || \mathbf x - \mathbf a || } ∣∣xa∣∣(xa)T ( x − a ) ∣ ∣ x − a ∣ ∣ \frac{(\mathbf x - \mathbf a)}{ || \mathbf x - \mathbf a || } ∣∣xa∣∣(xa)

4.3. 向量-标量

表达式分子记法分母记法备注
∂ a ∂ x = \frac{\partial \mathbf a}{\partial x} = xa= 0 \mathbf 0 0 0 \mathbf 0 0
∂ a u ∂ x = \frac{\partial a \mathbf u}{\partial x} = xau= a ∂ u ∂ x a \frac{\partial \mathbf u}{\partial x} axu a ∂ u ∂ x a \frac{\partial \mathbf u}{\partial x} axu u = u ( x ) \mathbf u = \mathbf u(\mathbf x) u=u(x)
∂ A u ∂ x = \frac{\partial \mathbf A \mathbf u}{\partial x} = xAu= A ∂ u ∂ x \mathbf A \frac{\partial \mathbf u}{\partial x} Axu ∂ u ∂ x A T \frac{\partial \mathbf u}{\partial x} \mathbf A^T xuAT u = u ( x ) \mathbf u = \mathbf u(\mathbf x) u=u(x)
∂ u T ∂ x = \frac{\partial \mathbf u^T}{\partial x} = xuT= ( ∂ u ∂ x ) T \left( \frac{\partial \mathbf u}{\partial x} \right)^T (xu)T ( ∂ u ∂ x ) T \left( \frac{\partial \mathbf u}{\partial x} \right)^T (xu)T u = u ( x ) \mathbf u = \mathbf u(\mathbf x) u=u(x)
∂ ( u + v ) ∂ x = \frac{\partial (\mathbf u + \mathbf v)}{\partial x} = x(u+v)= ∂ u ∂ x + ∂ v ∂ x \frac{\partial \mathbf u}{\partial x} + \frac{\partial \mathbf v}{\partial x} xu+xv ∂ u ∂ x + ∂ v ∂ x \frac{\partial \mathbf u}{\partial x} + \frac{\partial \mathbf v}{\partial x} xu+xv u = u ( x ) , v = v ( x ) \mathbf u = \mathbf u(\mathbf x), \mathbf v = \mathbf v(\mathbf x) u=u(x),v=v(x)
∂ ( u T × v ) ∂ x = \frac{\partial (\mathbf u^T \times \mathbf v)}{\partial x} = x(uT×v)= ( ∂ u ∂ x ) T × v + u T × ∂ v ∂ x \left( \frac{\partial \mathbf u}{\partial x} \right)^T \times \mathbf v + \mathbf u^T \times \frac{\partial \mathbf v}{\partial x} (xu)T×v+uT×xv ∂ u ∂ x × v + u T × ( ∂ v ∂ x ) T \frac{\partial \mathbf u}{\partial x} \times \mathbf v + \mathbf u^T \times \left( \frac{\partial \mathbf v}{\partial x} \right)^T xu×v+uT×(xv)T u = u ( x ) , v = v ( x ) \mathbf u = \mathbf u(\mathbf x), \mathbf v = \mathbf v(\mathbf x) u=u(x),v=v(x)
∂ f ( g ( u ) ) ∂ x = \frac{\partial \mathbf f(\mathbf g(\mathbf u))}{\partial x} = xf(g(u))= ∂ f ( g ) ∂ g ∂ g ( u ) ∂ u ∂ u ∂ x \frac{\partial \mathbf f(\mathbf g)}{\partial \mathbf g} \frac{\partial \mathbf g(\mathbf u)}{\partial \mathbf u} \frac{\partial \mathbf u}{\partial x} gf(g)ug(u)xu ∂ u ∂ x ∂ g ( u ) ∂ u ∂ f ( g ) ∂ g \frac{\partial \mathbf u}{\partial x}\frac{\partial \mathbf g(\mathbf u)}{\partial \mathbf u} \frac{\partial \mathbf f(\mathbf g)}{\partial \mathbf g} xuug(u)gf(g) u = u ( x ) \mathbf u = \mathbf u(\mathbf x) u=u(x)
∂ ( U × v ) ∂ x = \frac{\partial (\mathbf U \times \mathbf v)}{\partial x} = x(U×v)= ∂ U ∂ x × v + U × ∂ v ∂ x \frac{\partial \mathbf U}{\partial x} \times \mathbf v + \mathbf U \times \frac{\partial \mathbf v}{\partial x} xU×v+U×xv v T × ∂ U ∂ x + ∂ v ∂ x × U T \mathbf v^T \times \frac{\partial \mathbf U}{\partial x} + \frac{\partial \mathbf v}{\partial x} \times \mathbf U^T vT×xU+xv×UT U = U ( x ) , v = v ( x ) \mathbf U = \mathbf U(\mathbf x), \mathbf v = \mathbf v(\mathbf x) U=U(x),v=v(x)

4.4. 标量-矩阵

表达式分子记法分母记法备注
∂ a ∂ X = \frac{\partial a}{\partial \mathbf X} = Xa= 0 T \mathbf 0^T 0T 0 \mathbf 0 0
∂ a u ∂ X = \frac{\partial a u}{\partial \mathbf X} = Xau= a ∂ u ∂ X a \frac{\partial u}{\partial \mathbf X} aXu a ∂ u ∂ X a \frac{\partial u}{\partial \mathbf X} aXu u = u ( X ) u = u(\mathbf X) u=u(X)
∂ ( u + v ) ∂ X = \frac{\partial (u + v)}{\partial \mathbf X} = X(u+v)= ∂ u ∂ X + ∂ v ∂ X \frac{\partial u}{\partial \mathbf X} + \frac{\partial v}{\partial \mathbf X} Xu+Xv ∂ u ∂ X + ∂ v ∂ X \frac{\partial u}{\partial \mathbf X} + \frac{\partial v}{\partial \mathbf X} Xu+Xv u = u ( X ) , v = v ( X ) u = u(\mathbf X), v = v(\mathbf X) u=u(X),v=v(X)
∂ u v ∂ X = \frac{\partial u v}{\partial \mathbf X} = Xuv= u ∂ v ∂ X + v ∂ u ∂ X u \frac{\partial v}{\partial \mathbf X} + v \frac{\partial u}{\partial \mathbf X} uXv+vXu u ∂ v ∂ X + v ∂ u ∂ X u \frac{\partial v}{\partial \mathbf X} + v \frac{\partial u}{\partial \mathbf X} uXv+vXu u = u ( X ) , v = v ( X ) u = u(\mathbf X), v = v(\mathbf X) u=u(X),v=v(X)
∂ f ( g ( u ) ) ∂ X = \frac{\partial f(g(u))}{\partial \mathbf X} = Xf(g(u))= ∂ f ( g ) ∂ g ∂ g ( u ) ∂ u ∂ u ∂ X \frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf X} gf(g)ug(u)Xu ∂ f ( g ) ∂ g ∂ g ( u ) ∂ u ∂ u ∂ X \frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf X} gf(g)ug(u)Xu u = u ( X ) u = u(\mathbf X) u=u(X)
∂ a T X b ∂ X = \frac{\partial \mathbf a^T \mathbf X \mathbf b}{\partial \mathbf X} = XaTXb= b a T \mathbf b \mathbf a^T baT a b T \mathbf a \mathbf b^T abT
∂ a T X T b ∂ X = \frac{\partial \mathbf a^T \mathbf X^T \mathbf b}{\partial \mathbf X} = XaTXTb= a b T \mathbf a \mathbf b^T abT b a T \mathbf b \mathbf a^T baT
∂ ( X a + b ) T C ( X a + b ) ∂ X = \frac{\partial (\mathbf X \mathbf a + \mathbf b)^T \mathbf C (\mathbf X \mathbf a + \mathbf b)}{\partial \mathbf X} = X(Xa+b)TC(Xa+b)= [ ( C + C T ) ( X a + b ) a T ] T [ (\mathbf C + \mathbf C^T) (\mathbf X \mathbf a + \mathbf b) \mathbf a^T ]^T [(C+CT)(Xa+b)aT]T ( C + C T ) ( X a + b ) a T (\mathbf C + \mathbf C^T) (\mathbf X \mathbf a + \mathbf b) \mathbf a^T (C+CT)(Xa+b)aT
∂ ( X a ) T C ( X b ) ∂ X = \frac{\partial (\mathbf X \mathbf a)^T \mathbf C (\mathbf X \mathbf b)}{\partial \mathbf X} = X(Xa)TC(Xb)= ( C X b a T + C T X a b T ) T ( \mathbf C \mathbf X \mathbf b \mathbf a^T + \mathbf C^T \mathbf X \mathbf a \mathbf b^T )^T (CXbaT+CTXabT)T C X b a T + C T X a b T \mathbf C \mathbf X \mathbf b \mathbf a^T + \mathbf C^T \mathbf X \mathbf a \mathbf b^T CXbaT+CTXabT
∂ ∣ X ∣ ∂ X = \frac{\partial | \mathbf X | }{\partial \mathbf X} = XX= ∣ X ∣ X − 1 | \mathbf X | \mathbf X^{ - 1} XX1 ∣ X ∣ ( X − 1 ) T | \mathbf X | (\mathbf X^{ - 1})^T X(X1)T
∂ ln ⁡ ∣ a X ∣ ∂ X = \frac{\partial \ln | a \mathbf X | }{\partial \mathbf X} = XlnaX= X − 1 \mathbf X^{ - 1} X1 ( X − 1 ) T (\mathbf X^{ - 1})^T (X1)T
∂ ∣ A X B ∣ ∂ X = \frac{ \partial | \mathbf A \mathbf X \mathbf B | }{\partial \mathbf X} = XAXB= ∣ A X B ∣ X − 1 | \mathbf A \mathbf X \mathbf B | \mathbf X^{ - 1} AXBX1 ∣ A X B ∣ ( X − 1 ) T | \mathbf A \mathbf X \mathbf B | (\mathbf X^{ - 1})^T AXB(X1)T
∂ ∣ X n ∣ ∂ X = \frac{ \partial | \mathbf X^n | }{\partial \mathbf X} = XXn= n ∣ X n ∣ X − 1 n | \mathbf X^n | \mathbf X^{ - 1} nXnX1 n ∣ X n ∣ ( X − 1 ) T n | \mathbf X^n | (\mathbf X^{ - 1})^T nXn(X1)T
∂ ln ⁡ ∣ X T X ∣ ∂ X = \frac{ \partial \ln | \mathbf X^T \mathbf X | }{\partial \mathbf X} = XlnXTX= 2 X + 2 \mathbf X^+ 2X+ 2 ( X + ) T 2 (\mathbf X^+)^T 2(X+)T X + \mathbf X^+ X+ X \mathbf X X 的广义逆
∂ ln ⁡ ∣ X T X ∣ ∂ X + = \frac{\partial \ln | \mathbf X^T \mathbf X | }{\partial \mathbf X^+} = X+lnXTX= − 2 X - 2 \mathbf X 2X − 2 X T - 2 \mathbf X^T 2XT X + \mathbf X^+ X+ X \mathbf X X 的广义逆
∂ ∣ X T A X ∣ ∂ X = \frac{\partial | \mathbf X^T \mathbf A \mathbf X | }{\partial \mathbf X} = XXTAX= 2 ∣ X T A X ∣ X − 1 = 2 ∣ X T ∣ ∣ A ∣ ∣ X ∣ X − 1 2 | \mathbf X^T \mathbf A \mathbf X | \mathbf X^{ - 1} = 2 | \mathbf X^T | | \mathbf A | | \mathbf X | \mathbf X^{ - 1} 2∣XTAXX1=2∣XT∣∣A∣∣XX1 2 ∣ X T A X ∣ ( X − 1 ) T 2 | \mathbf X^T \mathbf A \mathbf X | (\mathbf X^{ - 1})^T 2∣XTAX(X1)T X \mathbf X X 为方阵且可逆
∂ ∣ X T A X ∣ ∂ X = \frac{\partial | \mathbf X^T \mathbf A \mathbf X | }{\partial \mathbf X} = XXTAX= 2 ∣ X T A X ∣ ( X T A T X ) − 1 X T A T 2 | \mathbf X^T \mathbf A \mathbf X | ( \mathbf X^T \mathbf A^T \mathbf X )^{ - 1} \mathbf X^T \mathbf A^T 2∣XTAX(XTATX)1XTAT 2 ∣ X T A X ∣ A X ( X T A X ) − 1 2 | \mathbf X^T \mathbf A \mathbf X | \mathbf A \mathbf X ( \mathbf X^T \mathbf A \mathbf X )^{ - 1} 2∣XTAXAX(XTAX)1 A \mathbf A A 对称
∂ ∣ X T A X ∣ ∂ X = \frac{\partial | \mathbf X^T \mathbf A \mathbf X | }{\partial \mathbf X} = XXTAX= ∣ X T A X ∣ [ ( X T A X ) − 1 X T A + ( X T A T X ) − 1 X T A T ] | \mathbf X^T \mathbf A \mathbf X | [ ( \mathbf X^T \mathbf A \mathbf X)^{ - 1} \mathbf X^T \mathbf A + ( \mathbf X^T \mathbf A^T \mathbf X )^{ - 1} \mathbf X^T \mathbf A^T ] XTAX[(XTAX)1XTA+(XTATX)1XTAT] ∣ X T A X ∣ [ A X ( X T A X ) − 1 + A T X ( X T A T X ) − 1 ] | \mathbf X^T \mathbf A \mathbf X | [ \mathbf A \mathbf X ( \mathbf X^T \mathbf A \mathbf X )^{ - 1} + \mathbf A^T \mathbf X ( \mathbf X^T \mathbf A^T \mathbf X )^{ - 1} ] XTAX[AX(XTAX)1+ATX(XTATX)1]

4.5. 矩阵-标量

表达式分子记法备注
∂ a U ∂ x = \frac{\partial a \mathbf U}{\partial x} = xaU= a ∂ U ∂ x a \frac{\partial \mathbf U}{\partial x} axU U = U ( x ) \mathbf U = \mathbf U(x) U=U(x)
∂ A U B ∂ x = \frac{\partial \mathbf A \mathbf U \mathbf B}{\partial x} = xAUB= A ∂ U ∂ x B \mathbf A \frac{\partial \mathbf U}{\partial x} \mathbf B AxUB U = U ( x ) \mathbf U = \mathbf U(x) U=U(x)
∂ ( U + V ) ∂ x = \frac{\partial (\mathbf U + \mathbf V)}{\partial x} = x(U+V)= ∂ U ∂ x + ∂ V ∂ x \frac{\partial \mathbf U}{\partial x} + \frac{\partial \mathbf V}{\partial x} xU+xV U = U ( x ) , V = V ( x ) \mathbf U = \mathbf U(x), \mathbf V = \mathbf V(x) U=U(x),V=V(x)
∂ ( U V ) ∂ x = \frac{\partial (\mathbf U \mathbf V)}{\partial x} = x(UV)= U ∂ V ∂ x + ∂ U ∂ x V \mathbf U \frac{\partial \mathbf V}{\partial x} + \frac{\partial \mathbf U}{\partial x} \mathbf V UxV+xUV U = U ( x ) , V = V ( x ) \mathbf U = \mathbf U(x), \mathbf V = \mathbf V(x) U=U(x),V=V(x)
∂ ( U ⊗ V ) ∂ x = \frac{\partial (\mathbf U \otimes \mathbf V)}{\partial x} = x(UV)= U ⊗ ∂ V ∂ x + ∂ U ∂ x ⊗ V \mathbf U \otimes \frac{\partial \mathbf V}{\partial x} + \frac{\partial \mathbf U}{\partial x} \otimes \mathbf V UxV+xUV U = U ( x ) , V = V ( x ) \mathbf U = \mathbf U(x), \mathbf V = \mathbf V(x) U=U(x),V=V(x) ⊗ \otimes 表示 Kronecker 乘积
∂ ( U ∘ V ) ∂ x = \frac{\partial (\mathbf U \circ \mathbf V)}{\partial x} = x(UV)= U ∘ ∂ V ∂ x + ∂ U ∂ x ∘ V \mathbf U \circ \frac{\partial \mathbf V}{\partial x} + \frac{\mathbf \partial U}{\partial x} \circ \mathbf V UxV+xUV U = U ( x ) , V = V ( x ) \mathbf U = \mathbf U(x), \mathbf V = \mathbf V(x) U=U(x),V=V(x) ∘ \circ 表示 Hadamard 乘积
∂ U − 1 ∂ x = \frac{\partial \mathbf U^{ - 1}}{\partial x} = xU1= − U − 1 ∂ U ∂ x U − 1 -\mathbf U^{ - 1} \frac{\partial \mathbf U}{\partial x} \mathbf U^{ - 1} U1xUU1 U = U ( x ) \mathbf U = \mathbf U(x) U=U(x)
∂ 2 U − 1 ∂ x ∂ y = \frac{\partial^2 \mathbf U^{ - 1}}{\partial x \partial y} = xy2U1= U − 1 ( ∂ U ∂ x U − 1 ∂ U ∂ y − ∂ 2 U ∂ x ∂ y + ∂ U ∂ y U − 1 ∂ U ∂ x ) U − 1 \mathbf U^{ - 1} \left( \frac{\partial \mathbf U}{\partial x} \mathbf U^{ - 1} \frac{\partial \mathbf U}{\partial y} - \frac{\partial^2 \mathbf U}{\partial x \partial y} + \frac{\partial \mathbf U}{\partial y} \mathbf U^{ - 1} \frac{\partial \mathbf U}{\partial x} \right) \mathbf U^{ - 1} U1(xUU1yUxy2U+yUU1xU)U1 U = U ( x , y ) \mathbf U = \mathbf U(x, y) U=U(x,y)
∂ g ( x A ) ∂ x = \frac{\partial g (x \mathbf A)}{\partial x} = xg(xA)= A g ′ ( x A ) = g ′ ( x A ) A \mathbf A g' (x \mathbf A) = g' (x \mathbf A) \mathbf A Ag(xA)=g(xA)A应为 Hadamard 乘积; g ( ⋅ ) g (\cdot) g() 为逐元函数,如下例
∂ e x A ∂ x = \frac{\partial e^{x \mathbf A}}{\partial x} = xexA= A e x A = e x A A \mathbf A e^{x \mathbf A} = e^{x \mathbf A} \mathbf A AexA=exAA

二、矩阵分解

  • QR分解: M = Q R M = QR M=QR, Q正交,R上三角。
  • 奇异值分解(Singular Value Decomposition,SVD) M = U Σ V T M = UΣV^T M=UΣVT, U和V正交,Σ非负对角。
  • 特征分解(Eigendecomposition),又叫谱分解(Spectral decomposition) S = Q Λ Q T S =QΛQ^T S=QΛQT, S对称,Q正交,Λ对角。
  • 极分解: M = Q S M = QS M=QS, Q正交,S对称半正定。
  • 科列斯基分解(Cholesky decomposition) A = L L ∗ \mathbf {A} =\mathbf {LL} ^{*} A=LL L \mathbf{L} L 下三角矩阵且所有对角元素均为正实数, L ∗ \mathbf {L} ^{*} L表示 L \mathbf {L} L 的共轭转置。每一个正定埃尔米特矩阵都有一个唯一的科列斯基分解
  • LU分解: A = L U A=LU A=LU,L下三角, U上三角

1. 科列斯基分解

科列斯基分解主要被用于线性方程组 A x = b \mathbf {Ax} =\mathbf {b} Ax=b 的求解。如果 A A A 是对称正定的,我们可以先求出 A = L L T \mathbf {A} =\mathbf {LL} ^{\mathbf {T} } A=LLT,随后借向后替换法对 y y y 求解 L y = b \mathbf {Ly} =\mathbf {b} Ly=b,再以向前替换法对 x x x 求解 L T x = y \mathbf {L} ^{\mathbf {T} }\mathbf {x} =\mathbf {y} LTx=y即得最终解。
另一种可避免在计算 L L T \mathbf {LL} ^{\mathbf {T} } LLT时需要解平方根的方法就是计算 A = L D L T \mathbf {A} =\mathbf {LDL} ^{\mathrm {T} } A=LDLT,然后对 y y y 求解 L y = b \mathbf {Ly} =\mathbf {b} Ly=b,最后求解 D L T x = y \mathbf {DL} ^{\mathrm {T} }\mathbf {x} =\mathbf {y} DLTx=y
对于可以被改写成对称矩阵的线性方程组,科列斯基分解及其LDL变形是一个较高效率及较高数值稳定性的求解方法。相比之下,其效率几近为LU分解的两倍

2. SGD分解

在这里插入图片描述

三、矩阵种类

1.「正定矩阵」和「半正定矩阵」

案例:多元正态分布的协方差矩阵要求是半正定的

【定义1】 给定一个大小为 n × n n\times n n×n 的实对称矩阵 A A A,若对于任意长度为 n n n 的非零向量 x \boldsymbol{x} x,有 x T A x > 0 \boldsymbol{x}^TA\boldsymbol{x}>0 xTAx>0 恒成立,则矩阵 A A A是一个正定矩阵


【定义2】 给定一个大小为 n × n n\times n n×n 的实对称矩阵 A A A ,若对于任意长度为 n n n 的向量 x \boldsymbol{x} x ,有 x T A x ≥ 0 \boldsymbol{x}^TA\boldsymbol{x}\geq0 xTAx0 恒成立,则矩阵 A A A 是一个半正定矩阵

直观解释:
若给定任意一个正定矩阵 A ∈ R n × n A\in\mathbb{R}^{n\times n} ARn×n 和一个非零向量 x ∈ R n \boldsymbol{x}\in\mathbb{R}^{n} xRn ,则两者相乘得到的向量 y = A x ∈ R n \boldsymbol{y}=A\boldsymbol{x}\in\mathbb{R}^{n} y=AxRn 与向量 x \boldsymbol{x} x 的夹角恒小于 π 2 \frac{\pi}{2} 2π . (等价于: x T A x > 0 \boldsymbol{x}^TA\boldsymbol{x}>0 xTAx>0 .)
若给定任意一个半正定矩阵 A ∈ R n × n A\in\mathbb{R}^{n\times n} ARn×n 和一个向量 x ∈ R n \boldsymbol{x}\in\mathbb{R}^{n} xRn ,则两者相乘得到的向量 y = A x ∈ R n \boldsymbol{y}=A\boldsymbol{x}\in\mathbb{R}^{n} y=AxRn 与向量 x \boldsymbol{x} x 的夹角恒小于或等于 π 2 \frac{\pi}{2} 2π . (等价于: x T A x ≥ 0 \boldsymbol{x}^TA\boldsymbol{x}\geq0 xTAx0 .)

1.1 为什么协方差矩阵是半正定的

对于任意多元随机变量 t \boldsymbol{t} t ,协方差矩阵为
C = E [ ( t − t ˉ ) ( t − t ˉ ) T ] C=\mathbb{E}\left[(\boldsymbol{t}-\bar{\boldsymbol{t}})(\boldsymbol{t}-\bar{\boldsymbol{t}})^T\right] C=E[(ttˉ)(ttˉ)T]

现给定任意一个向量 x \boldsymbol{x} x ,则 x T C x = x T E [ ( t − t ˉ ) ( t − t ˉ ) T ] x = E [ x T ( t − t ˉ ) ( t − t ˉ ) T x ] = E ( s 2 ) = σ s 2 \boldsymbol{x}^TC\boldsymbol{x}=\boldsymbol{x}^T\mathbb{E}\left[(\boldsymbol{t}-\bar{\boldsymbol{t}})(\boldsymbol{t}-\bar{\boldsymbol{t}})^T\right]\boldsymbol{x} =\mathbb{E}\left[\boldsymbol{x}^T(\boldsymbol{t}-\bar{\boldsymbol{t}})(\boldsymbol{t}-\bar{\boldsymbol{t}})^T\boldsymbol{x}\right]=\mathbb{E}(s^2)=\sigma_{s}^2 xTCx=xTE[(ttˉ)(ttˉ)T]x=E[xT(ttˉ)(ttˉ)Tx]=E(s2)=σs2
其中, σ s = x T ( t − t ˉ ) = ( t − t ˉ ) T x \sigma_s=\boldsymbol{x}^T(\boldsymbol{t}-\bar{\boldsymbol{t}})=(\boldsymbol{t}-\bar{\boldsymbol{t}})^T\boldsymbol{x} σs=xT(ttˉ)=(ttˉ)Tx。由于 σ s 2 ≥ 0 \sigma_s^2\geq0 σs20 ,因此, x T C x ≥ 0 \boldsymbol{x}^TC\boldsymbol{x}\geq0 xTCx0 ,协方差矩阵 C C C 是半正定的。

2. 逆矩阵

分块矩阵(Block matrix) 的逆矩阵恒等式:
( A B C D ) − 1 = ( M − M B D − 1 − D − 1 C M D − 1 + D − 1 C M B D − 1 ) \begin{pmatrix}A&B\\C&D\end{pmatrix}^{-1}=\begin{pmatrix}M&-MBD^{-1}\\-D^{-1}CM&D^{-1}{+D^{-1}CMBD^{-1}}\end{pmatrix} (ACBD)1=(MD1CMMBD1D1+D1CMBD1)
其中 M = ( A − B D − 1 C ) − 1 M=(A-BD^{-1}C)^{-1} M=(ABD1C)1

若A,C为可逆方阵,则有 ( A + B C D ) − 1 = A − 1 − A − 1 B ( D A − 1 B + C − 1 ) − 1 D A − 1 (A+BCD)^{-1}=A^{-1}-A^{-1}B(DA^{-1}B+C^{-1})^{-1}DA^{-1} (A+BCD)1=A1A1B(DA1B+C1)1DA1


工具网站

  • Matrix Calculus:在线计算矩阵导数

References

矩阵微积分 | Here4U

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/215043.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

装饰者设计模式

package com.jmj.pattern.decorator;/*** 快餐类(抽象构建角色)*/ public abstract class FastFood {private float price;private String desc;public float getPrice() {return price;}public void setPrice(float price) {this.price price;}public String getDesc() {retu…

中国上市公司漂绿程度及其同构指数(多种测算方法,2012-2022年)

数据简介:20 世纪 90 年代开始,国际上关于绿色市场和绿色管理的学术文献日渐丰富,众多企业积极响应碳排放政策的号召,但其中有多少企业是实实在在的进行碳减排技术创新,又有多少企业打着绿色低碳行为的口号来吸引眼球、…

python+requests+pytest+allure自动化框架

1.核心库 requests request请求 openpyxl excel文件操作 loggin 日志 smtplib 发送邮件 configparser unittest.mock mock服务 2.目录结构 base utils testDatas conf testCases testReport logs 其他 2.1base base_path.py 存放绝对路径,dos命令或Jenkins执行…

100%纯血鸿蒙来了,Android程序员影响甚大

“纯血鸿蒙”来了! 近日,美团、网易、今日头条、钉钉等多家互联网头部企业密集发布对鸿蒙系统相关人才的招聘信息,再度引爆市场对“纯血鸿蒙”的热议。 操作系统之“国货之光” 自2019年8月发布至今,鸿蒙系统已经更新到4.0版本…

pulseaudio是如何测试出音频延迟的

通常专业的音频设备生产厂商都有专业的设备来测试精确的音频链路延时。 那么没有专业设备怎么测试出音频延迟呢?如下图,我们可以看到pulseaudio可以测试出硬件音频延迟。 那么,他是怎么测试出硬件延迟的呢?他的理论依据是什么呢?接下来我带大伙一起探索一下。 /*占位…

github国内访问小解(windows)

git 下载安装 使用 github 前必须确保电脑上已经安装了 Git,可以从 Git 官方网站去下载。 官方的网站在国内访问会比较慢,这里可以选择国内镜像:https://registry.npmmirror.com/binary.html?pathgit-for-windows/ github 之旅 确认电脑已…

2023快速成为接口测试高手:实用指南!

大量线上BUG表明,对接口进行测试可以有效提升产品质量,暴露手工测试时难以发现的问题,同时也能缩短测试周期,提升测试效率。但在实际执行过程中,接口测试被很多同学打上了“上手难,门槛高”的标签。 本文旨…

vivado产生报告阅读分析20-QOR

Report QoR Suggestions report_qor_suggestions 命令是处理 QoR 建议对象时使用的主要命令。 QoR 建议对象会创建命令和属性来改善设计的时序性能( 欲知详情 , 请参阅 QoR 建议 ) 。 report_qor_suggestions 命令可执行两项任务 &am…

(Java版)新一代最强开源UI自动化测试神器Playwright(模拟移动设备和浏览器行为)

使用 Playwright,你可以在任何浏览器上测试你的应用程序,也可以模拟真实设备,例如手机或平板电脑。只需配置你想要模拟的设备,Playwright 就会模拟浏览器行为,例如“userAgent”、“screenSize”、“viewport”以及是否…

HashMap的实现原理,HashMap方法详解,hash()计算的原理,扩容机制

文章目录 说一下HashMap的实现原理(非常重要)①HashMap的工作原理HashMap存储结构常用的变量HashMap 构造函数tableSizeFor() put()方法详解hash()计算原理resize() 扩容机制get()方法为什么HashMap链表会形成死循环 说一下HashMap的实现原理(非常重要) HashMap概述&#xff1…

RevCol:可逆的柱状神经网络

文章目录 摘要1、简介2、方法2.1、Multi-LeVEl ReVERsible Unit2.2、可逆列架构2.2.1、MACRo设计2.2.2、MicRo 设计 2.3、中间监督 3、实验部分3.1、图像分类3.2、目标检测3.3、语义分割3.4、与SOTA基础模型的系统级比较3.5、更多分析实验3.5.1、可逆列架构的性能提升3.5.2、可…

解决在Windows10或Windows11下无权限修改hosts文件

解决在Windows10或Windows11下无权限修改hosts文件,无法写入内容 1、首先在开始菜单中找到这个 2、接着输入: C:\Windows\System32\drivers\etc3、再次输入以下命令行:notepad hosts ,并回车: notepad hosts 4、然后…