YOLOv5 第Y6周 模型改进

🍨 本文为[🔗365天深度学习训练营学习记录博客
🍦 参考文章:365天深度学习训练营
🍖 原作者:[K同学啊]
🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

改进前模型框架图:

改进后模型框架图:

改进前: 

改进后:

# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],    # 1-P2/4[-1, 3, C3, [128]],            # 2[-1, 1, Conv, [256, 3, 2]],    # 3-P3/8[-1, 6, C2, [256]],            # 4-修改为C2*2[-1, 1, Conv, [512, 3, 2]],    # 5-P4/16[-1, 3, C3, [512]],            # 6-修改为C3*1
#   [-1, 1, Conv, [1024, 3, 2]],   # 7-删除P5/32
#   [-1, 3, C3, [1024]],           # 8-删除[-1, 1, SPPF, [512, 5]],      # 9-修改参数;层数变为7]

 修改前:

修改后: 

# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 3, 2]], # 修改参数[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13->11[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17->15 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 12], 1, Concat, [1]],  # cat head P4 修改层数-2[-1, 3, C3, [512, False]],  # 20->18 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 8], 1, Concat, [1]],  # cat head P5 修改层数-2[-1, 3, C3, [1024, False]],  # 23->21 (P5/32-large)[[15, 18, 21], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5) 修改层数-2]

执行命令行:

python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt

运行结果: 

D:\yolov5-master>python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=D:/yolov5-master/models/yolov5s.yaml, data=D:/yolov5-master/data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2023-10-15 Python-3.10.7 torch-2.0.1+cpu CPUhyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4from  n    params  module                                  arguments0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]2                -1  1     18816  models.common.C3                        [64, 64, 1]3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]4                -1  2    115712  models.common.C2                        [128, 128, 2]5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]6                -1  3    625152  models.common.C3                        [256, 256, 3]7                -1  1    296192  models.common.SPPF                      [256, 512, 5]8                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]9                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']10           [-1, 6]  1         0  models.common.Concat                    [1]11                -1  1    361984  models.common.C3                        [512, 256, 1, False]12                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]13                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']14           [-1, 4]  1         0  models.common.Concat                    [1]15                -1  1     90880  models.common.C3                        [256, 128, 1, False]16                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]17          [-1, 12]  1         0  models.common.Concat                    [1]18                -1  1    296448  models.common.C3                        [256, 256, 1, False]19                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]20           [-1, 8]  1         0  models.common.Concat                    [1]21                -1  1   1182720  models.common.C3                        [512, 512, 1, False]22      [15, 18, 21]  1     24273  models.yolo.Detect                      [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Traceback (most recent call last):File "D:\yolov5-master\train.py", line 647, in <module>main(opt)File "D:\yolov5-master\train.py", line 536, in maintrain(opt.hyp, opt, device, callbacks)File "D:\yolov5-master\train.py", line 130, in trainmodel = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # createFile "D:\yolov5-master\models\yolo.py", line 195, in __init__m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forwardFile "D:\yolov5-master\models\yolo.py", line 194, in <lambda>forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)File "D:\yolov5-master\models\yolo.py", line 209, in forwardreturn self._forward_once(x, profile, visualize)  # single-scale inference, trainFile "D:\yolov5-master\models\yolo.py", line 121, in _forward_oncex = m(x)  # runFile "D:\Python\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_implreturn forward_call(*args, **kwargs)File "D:\yolov5-master\models\common.py", line 336, in forwardreturn torch.cat(x, self.d)
RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 32 but got size 16 for tensor number 1 in the list.D:\yolov5-master>python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=D:/yolov5-master/models/yolov5s.yaml, data=D:/yolov5-master/data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2023-10-15 Python-3.10.7 torch-2.0.1+cpu CPUhyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4from  n    params  module                                  arguments0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]2                -1  1     18816  models.common.C3                        [64, 64, 1]3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]4                -1  2    115712  models.common.C2                        [128, 128, 2]5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]6                -1  1    296448  models.common.C3                        [256, 256, 1]7                -1  1    164608  models.common.SPPF                      [256, 256, 5]8                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]9                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']10           [-1, 6]  1         0  models.common.Concat                    [1]11                -1  1    361984  models.common.C3                        [512, 256, 1, False]12                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]13                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']14           [-1, 4]  1         0  models.common.Concat                    [1]15                -1  1     90880  models.common.C3                        [256, 128, 1, False]16                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]17          [-1, 12]  1         0  models.common.Concat                    [1]18                -1  1    296448  models.common.C3                        [256, 256, 1, False]19                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]20           [-1, 8]  1         0  models.common.Concat                    [1]21                -1  1   1182720  models.common.C3                        [512, 512, 1, False]22      [15, 18, 21]  1     24273  models.yolo.Detect                      [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5s summary: 179 layers, 4304785 parameters, 4304785 gradients, 13.4 GFLOPsTransferred 126/289 items from yolov5s.pt
WARNING  --img-size 900 must be multiple of max stride 32, updating to 928
optimizer: SGD(lr=0.01) with parameter groups 47 weight(decay=0.0), 50 weight(decay=0.0005), 50 bias
train: Scanning D:\yolov5-master\Y2\train... 1 images, 0 backgrounds, 159 corrupt: 100%|██████████| 160/160 [00:13<00:0
train: WARNING   D:\yolov5-master\Y2\images\fruit1.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit1.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit10.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit10.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit100.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit100.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit102.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit102.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit103.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit103.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit104.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit104.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit106.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit106.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit108.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit108.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit109.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit109.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit11.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit11.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit110.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit110.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit111.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit111.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit113.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit113.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit114.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit114.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit115.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit115.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit116.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit116.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit117.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit117.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit118.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit118.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit119.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit119.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit12.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit12.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit120.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit120.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit121.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit121.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit122.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit122.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit123.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit123.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit124.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit124.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit125.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit125.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit127.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit127.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit129.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit129.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit13.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit13.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit130.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit130.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit131.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit131.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit132.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit132.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit133.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit133.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit134.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit134.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit135.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit135.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit136.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit136.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit138.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit138.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit14.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit14.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit142.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit142.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit143.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit143.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit144.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit144.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit145.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit145.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit147.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit147.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit148.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit148.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit149.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit149.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit15.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit15.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit151.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit151.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit152.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit152.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit155.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit155.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit156.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit156.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit157.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit157.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit158.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit158.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit159.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit159.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit16.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit16.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit161.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit161.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit162.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit162.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit163.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit163.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit164.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit164.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit165.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit165.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit167.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit167.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit168.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit168.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit169.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit169.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit17.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit17.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit170.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit170.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit171.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit171.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit172.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit172.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit173.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit173.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit174.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit174.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit175.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit175.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit176.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit176.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit177.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit177.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit178.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit178.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit179.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit179.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit18.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit18.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit180.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit180.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit181.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit181.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit182.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit182.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit183.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit183.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit184.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit184.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit185.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit185.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit186.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit186.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit187.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit187.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit188.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit188.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit19.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit19.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit196.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit196.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit197.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit197.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit198.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit198.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit199.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit199.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit2.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit2.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit200.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit200.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit202.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit202.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit208.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit208.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit209.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit209.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit211.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit211.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit22.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit22.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit23.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit23.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit25.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit25.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit26.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit26.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit27.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit27.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit28.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit28.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit29.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit29.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit3.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit3.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit30.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit30.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit31.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit31.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit33.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit33.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit34.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit34.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit35.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit35.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit36.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit36.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit38.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit38.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit39.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit39.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit4.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit4.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit40.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit40.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit43.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit43.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit44.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit44.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit45.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit45.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit46.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit46.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit49.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit49.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit50.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit50.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit51.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit51.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit52.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit52.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit53.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit53.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit54.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit54.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit55.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit55.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit57.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit57.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit59.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit59.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit6.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit6.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit60.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit60.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit61.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit61.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit62.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit62.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit63.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit63.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit65.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit65.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit66.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit66.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit68.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit68.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit69.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit69.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit7.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit7.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit70.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit70.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit71.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit71.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit73.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit73.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit74.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit74.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit75.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit75.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit77.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit77.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit78.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit78.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit79.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit79.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit80.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit80.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit81.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit81.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit82.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit82.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit83.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit83.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit85.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit85.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit86.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit86.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit87.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit87.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit88.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit88.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit89.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit89.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit90.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit90.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit91.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit91.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit94.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit94.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit95.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit95.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit97.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit97.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit98.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit98.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit99.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit99.png'
train: WARNING  Cache directory D:\yolov5-master\Y2 is not writeable: [WinError 183] : 'D:\\yolov5-master\\Y2\\train.cache.npy' -> 'D:\\yolov5-master\\Y2\\train.cache'
val: Scanning D:\yolov5-master\Y2\val.cache... 1 images, 0 backgrounds, 19 corrupt: 100%|██████████| 20/20 [00:00<?, ?i
val: WARNING   D:\yolov5-master\Y2\images\fruit107.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit107.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit112.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit112.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit139.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit139.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit140.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit140.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit141.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit141.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit146.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit146.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit20.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit20.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit210.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit210.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit24.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit24.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit32.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit32.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit41.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit41.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit47.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit47.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit48.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit48.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit5.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit5.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit64.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit64.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit8.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit8.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit84.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit84.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit92.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit92.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit96.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit96.png'AutoAnchor: 4.33 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset
Plotting labels to runs\train\exp16\labels.jpg...
Image sizes 928 train, 928 val
Using 0 dataloader workers
Logging results to runs\train\exp16
Starting training for 100 epochs...Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size0/99         0G     0.1023    0.06894     0.0481          7        928:   0%|          | 0/1 [00:01<?, ?it/s]WARNING  TensorBoard graph visualization failure Sizes of tensors must match except in dimension 1. Expected size 58 but got size 57 for tensor number 1 in the list.0/99         0G     0.1023    0.06894     0.0481          7        928: 100%|██████████| 1/1 [00:02<00:00,  2.22Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size1/99         0G      0.116     0.0604    0.04635          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.19Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size2/99         0G     0.1082    0.05426    0.05132          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.25Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size3/99         0G    0.07671    0.04771     0.0333          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.14Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size4/99         0G    0.08278    0.04585     0.0296          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.10Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size5/99         0G      0.111    0.09066    0.04756         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.16Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size6/99         0G      0.116    0.06792    0.04824          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.25Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size7/99         0G    0.07378    0.05158    0.03187          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.23Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size8/99         0G     0.1157    0.05443    0.05176          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.27Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size9/99         0G     0.1144    0.05169    0.06036          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.20Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size10/99         0G     0.1124    0.09406    0.04572         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.24Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size11/99         0G     0.0766    0.04767    0.03086          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.19Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size12/99         0G     0.1054    0.08936    0.04594         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.22Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size13/99         0G     0.1048    0.04886    0.05069          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.22Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size14/99         0G    0.07221    0.04882    0.02977          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.17Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size15/99         0G     0.1178    0.04965    0.05099          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.16Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3          0          0          0          0Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size16/99         0G     0.1314    0.05189    0.05638          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.21Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0045      0.333    0.00582    0.00279Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size17/99         0G     0.0856    0.04364    0.02689          2        928: 100%|██████████| 1/1 [00:01<00:00,  1.14Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0045      0.333    0.00582    0.00279Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size18/99         0G     0.1042     0.0573    0.04667          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.16Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0045      0.333    0.00582    0.00279Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size19/99         0G     0.0898    0.05344    0.04976          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.14Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0045      0.333    0.00582    0.00279Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size20/99         0G     0.1115     0.0723    0.04465         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.20Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0045      0.333    0.00582    0.00279Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size21/99         0G     0.0894    0.05696    0.04866          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.18Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0045      0.333    0.00582    0.00279Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size22/99         0G     0.1064    0.09512    0.04609         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.13Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0045      0.333    0.00582    0.00279Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size23/99         0G     0.1139    0.05224    0.04599          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.31Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3     0.0045      0.333    0.00582    0.00279Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size24/99         0G     0.1062    0.06945    0.04768          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.26Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size25/99         0G      0.116    0.09317    0.04589         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.28Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size26/99         0G     0.1084    0.07551    0.04941          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.14Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size27/99         0G    0.09334    0.05819    0.04563          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.13Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size28/99         0G    0.07549    0.05148     0.0278          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.36Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size29/99         0G     0.1213    0.05355    0.05749          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.21Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size30/99         0G    0.09584    0.07607     0.0448          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.22Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size31/99         0G    0.09792    0.06158    0.04772          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.14Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size32/99         0G    0.07992    0.04641    0.03711          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.16Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size33/99         0G     0.1093     0.1033    0.04237         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.27Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size34/99         0G     0.0973    0.05861    0.05034          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.16Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size35/99         0G     0.1088    0.07091    0.05135          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.15Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00433      0.333     0.0051    0.00251Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size36/99         0G      0.106    0.09896     0.0442         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.16Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size37/99         0G    0.09571    0.06897     0.0473          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.11Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size38/99         0G     0.0849    0.04579    0.03352          2        928: 100%|██████████| 1/1 [00:01<00:00,  1.11Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size39/99         0G    0.09164    0.07926    0.04676          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.21Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size40/99         0G     0.1012    0.06744    0.04635          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.31Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size41/99         0G    0.09285     0.0705    0.05205          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.37Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size42/99         0G    0.09498    0.05619    0.04658          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.26Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size43/99         0G    0.09886     0.0651    0.05261          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.24Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size44/99         0G     0.1023    0.09061    0.04475         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.29Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size45/99         0G     0.1112    0.05952    0.04528          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.25Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size46/99         0G    0.06881    0.04866    0.03377          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.24Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size47/99         0G      0.107    0.09679     0.0465         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.27Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size48/99         0G     0.0966    0.06407    0.05717          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.22Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size49/99         0G     0.1058    0.05406    0.04795          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.23Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size50/99         0G     0.1129    0.09446    0.04697         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.25Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size51/99         0G     0.1094    0.05599    0.04734          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.33Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size52/99         0G     0.1011    0.08309     0.0515          9        928: 100%|██████████| 1/1 [00:01<00:00,  1.22Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00337      0.333    0.00436    0.00247Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size53/99         0G    0.07754    0.04801    0.03401          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.26Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size54/99         0G     0.1096    0.09382    0.04247         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.25Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size55/99         0G     0.1049    0.06054    0.04536          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.29Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size56/99         0G     0.1158    0.06923    0.04261          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.27Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size57/99         0G     0.1096    0.05218    0.05424          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.22Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size58/99         0G    0.07191    0.06456    0.03113          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.24Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size59/99         0G     0.1026    0.09789      0.045         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.23Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size60/99         0G    0.09762    0.05207     0.0531          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.22Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size61/99         0G    0.07858    0.05155    0.03045          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.27Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size62/99         0G     0.1158    0.05363    0.04873          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.24Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size63/99         0G     0.1099     0.1002    0.04338         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.23Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size64/99         0G     0.1129    0.05755    0.04531          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.21Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size65/99         0G     0.1013    0.07252    0.04573          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.26Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size66/99         0G    0.09242    0.05776    0.05089          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.25Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size67/99         0G     0.1057    0.06878    0.04572          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.22Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size68/99         0G     0.1167    0.05181    0.04856          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.28Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size69/99         0G    0.09379    0.07217     0.0474          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.32Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size70/99         0G     0.0967    0.06586    0.04948          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.29Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size71/99         0G     0.1116    0.09719    0.04578         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.33Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size72/99         0G    0.09084    0.05456    0.04548          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.37Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size73/99         0G      0.111    0.05615    0.04613          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.31Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size74/99         0G     0.1121    0.09089    0.04653         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.32Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size75/99         0G    0.07513    0.04933    0.02963          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.34Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size76/99         0G    0.07868    0.04755    0.02927          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.24Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size77/99         0G    0.09763    0.05113    0.04474          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.20Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00366      0.333    0.00448    0.00245Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size78/99         0G    0.09904    0.05832    0.04777          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.31Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size79/99         0G    0.07866    0.05068    0.03276          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.24Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size80/99         0G    0.07645    0.05212    0.02934          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.29Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size81/99         0G    0.08324    0.04543    0.03031          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.23Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size82/99         0G     0.1052    0.06037    0.04437          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.25Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size83/99         0G     0.1036    0.06233    0.05686          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.26Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size84/99         0G     0.1042    0.09739    0.04465         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.28Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size85/99         0G    0.08622    0.05649     0.0523          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.26Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size86/99         0G     0.1084     0.1003    0.04353         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.26Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size87/99         0G    0.08857    0.06209    0.04712          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.22Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size88/99         0G    0.09376    0.05289    0.05011          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.26Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size89/99         0G     0.1045    0.05565    0.04718          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.25Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size90/99         0G     0.1034    0.05799    0.04736          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.28Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size91/99         0G     0.1023    0.06441    0.04832          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.24Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size92/99         0G     0.1109    0.08371    0.04649         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.29Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size93/99         0G     0.1058     0.0641    0.05235          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.27Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size94/99         0G     0.1209     0.0516    0.04735          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.24Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size95/99         0G       0.11    0.09829    0.04451         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.26Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size96/99         0G    0.09733    0.05244    0.05601          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.27Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size97/99         0G    0.09427    0.05871    0.05337          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.29Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size98/99         0G    0.09102     0.1003    0.04611         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.25Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size99/99         0G    0.07237     0.0536    0.03054          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.31Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00881    0.00254100 epochs completed in 0.053 hours.
Optimizer stripped from runs\train\exp16\weights\last.pt, 9.1MB
Optimizer stripped from runs\train\exp16\weights\best.pt, 9.1MBValidating runs\train\exp16\weights\best.pt...
Fusing layers...
YOLOv5s summary: 132 layers, 4298225 parameters, 0 gradients, 13.2 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0all          1          3    0.00726      0.667    0.00891    0.00258banana          1          1    0.00943          1    0.00985   0.000985snake fruit          1          1          0          0          0          0pineapple          1          1     0.0123          1     0.0169    0.00675
Results saved to runs\train\exp16

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/215094.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python之Pygame游戏编程详解

一、介绍 1.1 定义 Pygame是一种流行的Python游戏开发库&#xff0c;它提供了许多功能&#xff0c;使开发人员可以轻松创建2D游戏。它具有良好的跨平台支持&#xff0c;可以在多个操作系统上运行&#xff0c;例如Windows&#xff0c;MacOS和Linux。在本文中&#xff0c;我们将…

基于java技术的社区交易二手平台

基于java技术的社区交易二手平台的设计与实现 &#xff08;一&#xff09;开发背景 随着因特网的日益普及与发展&#xff0c;更多的人们开始通过因特网来寻求便利。但是&#xff0c;许多人都觉得网上商店里的东西不贵。所以&#xff0c;有些顾客宁愿去那些用二次定价建立起来的…

全球服的游戏服务器架构设计

全球服的游戏服务器架构设计 版权声明 本文为“优梦创客”原创文章&#xff0c;您可以自由转载&#xff0c;但必须加入完整的版权声明 文章内容不得删减、修改、演绎 相关学习资料见文末 主题 常见服务器端架构划分 不同类型游戏的架构选择与瓶颈 如何设计通用、可伸缩的…

BGP联邦及路由反射器配置

需求 1 AS1存在两个环回&#xff0c;一个地址为192.168.1.0/24&#xff0c;该地址不能再任何协议中宣告 AS3存在两个环回&#xff0c;一个地址为192.168.2.0/24&#xff0c;该地址不能再任何协议中宣告 AS1还有一个环回地址为10.1.1.0/24&#xff0c;AS3另一个环回地址是11.1.1…

2048 数字合成大作战,Android小游戏开发

A. 项目描述 《2048》是一款经典的益智小游戏&#xff0c;它的目标是通过合并相同数字来达到2048这个最高分。 该游戏规则简单&#xff0c;玩家需要通过滑动屏幕来移动方块&#xff0c;相同数字的方块会合并成一个新的数字方块。这样的简单操作让人可以轻松上手。 《2048》小…

H5ke12--1--iframe标签制作页面的使用

上次说到 如何我们的数据html页面返回到服务器,服务器到html.submit不要了,直接button普通按钮,action也不用,,,fetch直接异步请求,那么就会有数据发送到服务器 Repones.write写入就行了,直接写的就是html页面演示 这次我们来看iframe, H5加入了传输页面的新的事件 注意 link、…

vivado产生报告阅读分析19-设计收敛报告

Challenging Timing Paths “ Challenging Timing Paths ” &#xff08; 时序收敛困难的路径 &#xff09; 部分列出了“ Assessment Details ” &#xff08; 评估详情 &#xff09; 部分中未能通过检查的时序路径的关键属性。默认情况下&#xff0c; 该命令会对每个时钟组中…

计算机组成原理-磁盘存储器

文章目录 总览外存储器磁盘存储器磁盘的性能指标磁盘地址磁盘的工作过程磁盘阵列 总结 总览 外存储器 机械硬盘即磁盘 磁盘存储器 写是利用电流产生磁场从而写磁盘 读是利用载磁体移动时产生的电场从而得到数据 磁性材质易受外界磁场干扰 下图中 载磁体上N S的前后顺序代表对…

C++之unordered_map/set的使用

前面我们已经学习了STL中底层为红黑树结构的一系列关联式容器——set/multiset 和 map/multimap(C98). unordered系列关联式容器 在C98中, STL提供了底层为红黑树结构的一系列关联式容器, 在查询时效率可达到log2N,即最差情况下需要比较红黑树的高度次, 当树中的节点非常多时,…

stack和queue

目录 stack 介绍 头文件 简单使用 constructor empty size top push pop swap 使用 queue 介绍 头文件 简单使用 constructor empty size front back push pop swap 使用 stack 介绍 栈 先进后出 头文件 #include <stack> 简单使用 constru…

能耗在线监测系统在项目建设中的应用

安科瑞 华楠 摘要&#xff1a;基于能耗在线监测项目建设实践&#xff0c;对该类项目的建设内容进行了全要素分析, 提出了该类项目的建设技术方案。对相关项目在节能减排工作中的实际应用进行了系统研究&#xff0c;提出了项目的关键技术内容、系统架构和应用功能体系三大主要建…

Python接口自动化测试——如何搭建测试环境

前言 接口测试的方式有很多&#xff0c;比如可以用工具&#xff08;jmeter,postman&#xff09;之类&#xff0c;也可以自己写代码进行接口测试&#xff0c;工具的使用相对来说都比较简单&#xff0c;重点是要搞清楚项目接口的协议是什么&#xff0c;然后有针对性的进行选择&a…