Interactive Visual Data Analysis

Words&Contents

Home | Interactive Visual Data Analysis

Book Outline

这本书对视觉、互动和分析方法进行了系统而全面的概述,作为数据可视化方面比较好的读物; 

目录

Words&Contents

Book Outline

(一)Introduction

1.Basic Considerations

1.1 Visualization ,Interaction , and Computation

1.2 Five Ws of Interactive Visual Data Analysis

2.introductory Examples

2.1 Start Simple

2.2 Enhancing the Data Analysis

2.3 Consider Advanced Techniques

3.Book Outlines


(一)Introduction

信息时代,数据已经变成了一个非常有价值的商品,我们如何 make sense of data ? 如何利用分析数据从而得出一些有价值的信息?

1.Basic Considerations

对可视化的一些基本的术语给予一些认识:

1.1 Visualization ,Interaction , and Computation

 这个定义我认为对整个可视化的概括的更加全面,不仅仅是一次性的绘制图,而是随着insigt的揭露进行交互来不断探究;

1.2 Five Ws of Interactive Visual Data Analysis

为了开发出有效的数据分析工具,必须考虑到该工具的使用环境。因而我们遵循five W的变体来进行探究:Ws: What, why, who, where, and when.

(1)What data are to be analyzed?

有许多中类型的数据,针对不同类型的数据有个体特征,例如数据规模、维度和异质性;

(2)Why are the data analyzed?

帮助人们实现目标,而对于目标即包含多种分析任务,例如识别数据值或者根据数据设定相关的模式;

(3)Who will analyze the data?

这个暂时个人理解是决策者才是需要分析数据的;

(4)Where will the data be analyzed?

普通的工作场所当然是具有显示器、鼠标和键盘的经典桌面设置。然而,也有大型的显示墙和交互式表面,为交互式可视化数据分析提供了新的机会。

(5)When will the data be analyzed?

绝大数是根据自身的需求所决定;

这5个Ws表明了数据分析的工具往往会受到多个因素的影响,对于What和Why这两个因素的影响往往是至关重要的,这往往决定了我们的工作必须是针对某一个任务,即是定制的,不通用的。同时Who,即主观的因素,感知能力、认知、背景知识和专业等也会影响视觉驱动和交互控制的工具。Where和When这两个因素,影响不太大,但是当我们考虑到数据分析要在多个异构显示上运行、支持协作会话或遵循针对特定领域的工作流时,这两个因素可以起到很重要的作用,并且能够使得工作具有更大的亮点,使得更加的专业。

2.introductory Examples

从一些基础的可视化表示到一些高级的分析场景,不仅给出了交互式可视化的强大能力,并且也分析了设计的决策和挑战。

可以改善的一些角度:increase the degree of sophistication of the examples by enhancing the visual mapping, integrating interaction mecha nisms and automatic computations, combining multiple views, incorporating user guidance, and considering multi-display environments.
2.1 Start Simple

一个简单的例子,主要是针对于雨果《悲惨世界》中的人物关系图,这种一般graph可以采用Node-Link diagram,只有图表的结构很难把其中的关系显示出来。图中,每一个人物被可视化为一个节点,人物之间的关系表示为边,这样能够比较明显的表示该数据集中的关系。

针对每一个人物,根据数据集中表示的属性,其中每个节点根据id来进行识别,对于边来说,有权重、边的起点和终点。因此,在图中,边的连接往往决定了节点人物的重要性,因而用颜色来进行编码节点的度,当节点的度数越高,此时也用节点的大小来突出重要的人物;针对边的权重这个性质,我们使用边的宽度来表示,当边的权重越高,说明这个关系较为重要,则边越宽;

notes: 这里的布局主要采用的是强制定向布局算法(Force-directed Layout Algorithm),也称为是力导向布局算法,是一种常用于图形和网络可视化的布局算法怕,它模拟了物理系统中的力和运动原理,通过相互作用的力来确定节点的位置。

2.2 Enhancing the Data Analysis

上述的算法对于较为简单的数据集是非常好的,但是数据集相对复杂的时候就难以展示了,例如 climate networks,节点数量以及边的连线会导致视觉混杂的问题;

A standard approach in such situations is to focus on relevant subsets of the data. Subsets
can be created dynamically using interactive fifiltering mechanisms that enable users to specify the parts of the data they are interested in.
For the climate network we may be interested in those nodes that are crucial for the transfer or flflow in the network. Such nodes are characterized by a high centrality , a graph-theoretic measure. An automatic algorithm can be used to calculate the centrality for each node of the network. Then it is up to the user to determine interactively a suitable threshold for fifiltering out
low-centrality nodes and their incident edges.
我们可以看到,通过动态过滤能够将 climate networks 显示地更加清楚和明白;

目前, 动态过滤(danamic fiter)的方法已经能够解决 dataset size 带来的视觉混乱的问题,但是对于空间和时间所带来的问题,也需要解决;
例如,Climate networks这个网络,一般是在同一个空间中给出的,但是也会受到时间改变的影响。这个问题,使用多个视图的显示解决,如下图;

2.3 Consider Advanced Techniques

综上两个小节,使用了动态过滤和多个视图来对整个数据集有一个较为全面的overview,但是,使用交互式可视化分析数据也会有一些局限。可视化必须适应可用的显示空间。交互不应该让用户做太多的事情。分析计算必须及时地产生结果。

当我们考虑到这两个限制的时候,想出了两个方法:

(1)指导用户进行数据分析;

Some Questions are valued to be answered.

What can I do to get closer to my goal, which action sequence do I have to take, how are the individual interactions carried out? An advanced visual analysis system is capable of providing guidance to assist the user in answering such questions.
当不确定如何进行分析的时候,应该给出一定&平衡的推荐,指导用户接着进行数据分析;

(2)扩大屏幕空间可视化。

可以考虑使用多个显示屏或者多个用户共同协作的方式来解决;

3.Book Outlines(见第一部分)

参考:

https://www.crcpress.com/AK-Peters-Visualiza!on-Series/book-series/CRCVIS

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/215344.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【教学类-06-07】20231124 (55格版)X-X之间的加法、减法、加减混合题

背景需求 在大四班里,预测试55格“5以内、10以内、20以内的加法题、减法题、加减混合题”的“实用性”。 由于只打印一份20以内加法减法混合题。 “这套20以内的加减法最难”,我询问谁会做(摸底幼儿的水平) 有两位男孩举手想挑…

c语言数字转圈

数字转圈 题干输入整数 N(1≤N≤9),输出如下 N 阶方阵。 若输入5显示如下方阵: * 1** 2** 3** 4** 5* *16**17**18**19** 6* *15**24**25**20** 7* *14**23**22**21** 8* *13**12**11**10** 9*输入样例3输出样例* 1*…

Hibernate的三种状态

1.瞬时状态(Transient) 通过new创建对象后,对象并没有立刻持久化,他并未对数据库中的数据有任何的关联,此时java对象的状态为瞬时状态,Session对于瞬时状态的java对象是一无所知的,当对象不再被其他对象引用时&#xf…

改进YOLOv8 | YOLOv5系列:RFAConv续作,即插即用具有任意采样形状和任意数目参数的卷积核AKCOnv

RFAConv续作,构建具有任意采样形状的卷积AKConv 一、论文yolov5加入的方式论文 源代码 一、论文 基于卷积运算的神经网络在深度学习领域取得了显著的成果,但标准卷积运算存在两个固有缺陷:一方面,卷积运算被限制在一个局部窗口,不能从其他位置捕获信息,并且其采样形状是…

python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)

python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny) 这次实验,我们分别使用opencv 的 sobel算子、沙尔算子、拉普拉斯算子三种算子取进行边缘检测,然后后面又使用了Canny算法进行边缘检测。 直接看代码,代…

卷积神经网络(Inception V3)识别手语

文章目录 一、前言二、前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)2. 导入数据3. 查看数据 二、数据预处理1. 加载数据2. 可视化数据3. 再次检查数据4. 配置数据集 三、构建Inception V3网络模型1.自己搭建2.官方模型 五、编译六、训练模型七、模型…

【算法专题】滑动窗口—无重复字符的最长子串

力扣题目链接:无重复字符的最长子串 一、题目解析 二、算法原理 解法一:暴力解法(时间复杂度最坏:O(N)) 从每一个位置开始往后枚举,在往后寻找无重复最长子串时,可以利用哈希表来统计字符出现…

ctfshow sql

180 过滤%23 %23被过滤,没办法注释了,还可以用’1’1来闭合后边。 或者使用--%0c-- 1%0corder%0cby%0c3--%0c--1%0cunion%0cselect%0c1,2,database()--%0c--1%0cunion%0cselect%0c1,2,table_name%0cfrom%0cinformation_schema.tables%0cwhere%0ctable_…

C#,《小白学程序》第四课:数学计算,总和与平均值

程序是 数据 计算 显示。 1 文本格式 /// <summary> /// 《小白学程序》第四课&#xff1a;数学计算 /// 这节课超级简单&#xff0c;就是计算成绩的平均值&#xff08;平均分&#xff09; /// 这个是老师们经常做的一件事。 /// </summary> /// <param name&…

Jmeter 压测保姆级入门教程

1、Jmeter本地安装 1.1、下载安装 软件下载地址&#xff1a; https://mirrors.tuna.tsinghua.edu.cn/apache/jmeter/binaries/ 选择一个压缩包下载即可 然后解压缩后进入bin目录直接执行命令jmeter即可启动 1.2 修改语言 默认是英文的&#xff0c;修改中文&#xff0c;点击…

MediaCodec详解

MediaCodec 是Android平台提供的一个API&#xff0c;用于对音频和视频数据进行编码&#xff08;转换为不同的格式&#xff09;和解码&#xff08;从一种格式转换回原始数据&#xff09;。它是Android 4.1&#xff08;API级别16&#xff09;及以上版本的一部分&#xff0c;允许开…