机器学习算法——主成分分析(PCA)

目录

  • 1. 主体思想
  • 2. 算法流程
  • 3. 代码实践

1. 主体思想

主成分分析(Principal Component Analysis)常用于实现数据降维,它通过线性变换将高维数据映射到低维空间,使得映射后的数据具有最大的方差。主成分可以理解成数据集中的特征,具体来说,第一主成分是数据中方差最大的特征(即该特征下的值的方差最大),数据点在该方向有最大的扩散性(即在该方向上包含的信息量最多)。第二主成分与第一主成分正交(即与第一主成分无关),并在所有可能正交方向中,选择方差次大的方向。然后,第三主成分与前两个主成分正交,且选择在其余所有可能正交方向中有最大方差的方向,以此类推,有多少特征就有多少主成分

  • 主成分上的方差越小,说明该特征上的取值可能都相同,那这一个特征的取值对样本而言就没有意义,因为其包含的信息量较少。
  • 主成分上的方差越大,说明该特征上的值越分散,那么它包含的信息就越多,对数据降维就越有帮助。

下图1中,紫色线方向上数据的方差最大(该方向上点的分布最分散,包含了更多的信息量),则可以将该方向上的特征作为第一主成分。
在这里插入图片描述

主成分分析的优点2

  • 数据降维:PCA能够减少数据的维度(复杂度),提高计算效率。
  • 数据可视化:通过PCA降维,可以将数据可视化到更低维度的空间中,便于数据的观察和理解。
  • 去除噪声: 主成分分析可以把数据的主要特征提取出来(数据的主要特征集中在少数几个主成分上),忽略小的、可能是噪声的特征,同时可以防止过拟合。
  • 去除冗余: 在原始数据中,很多情况下多个变量之间存在高度相关性,导致数据冗余。PCA通过新的一组正交的主成分来描述数据,可以最大程度降低原始的数据冗余。

2. 算法流程

  1. 数据预处理:中心化 x i − x ˉ x_i-\bar{x} xixˉ (每列的每个值都减去该列的均值)。
  2. 求样本的协方差矩阵 1 m X T X \frac{1}{m}X^TX m1XTX(m为样本数量,X为样本矩阵)。
  3. 计算协方差矩阵的特征值和对应的特征向量。
  4. 选择最大的 K K K 个特征值对应的 K K K 个特征向量构造特征矩阵。
  5. 将中心化后的数据投影到特征矩阵上。
  6. 输出投影后的数据集。

协方差矩阵的计算(二维)
C = 1 m X T X = ( C o v ( x , x ) C o v ( x , y ) C o v ( y , x ) C o v ( y , y ) ) = ( 1 m ∑ i = 1 m x i 2 1 m ∑ i = 1 m x i y i 1 m ∑ i = 1 m y i x i 1 m ∑ i = 1 m y i 2 ) C=\frac{1}{m}X^TX=\begin{pmatrix}Cov(x,x)&Cov(x,y) \\Cov(y,x)&Cov(y,y)\end{pmatrix} =\begin{pmatrix} \frac{1}{m}\sum_{i=1}^{m}x_i^2&\frac{1}{m}\sum_{i=1}^{m}x_iy_i \\ \frac{1}{m}\sum_{i=1}^{m}y_ix_i&\frac{1}{m}\sum_{i=1}^{m}y_i^2 \end{pmatrix} C=m1XTX=(Cov(x,x)Cov(y,x)Cov(x,y)Cov(y,y))=(m1i=1mxi2m1i=1myixim1i=1mxiyim1i=1myi2)
其中, x x x y y y 表示不同的特征列, c o v ( x , x ) = D ( x ) = 1 m ∑ i = 1 m ( x i − x ˉ ) 2 cov(x,x)=D(x)=\frac{1}{m}\sum_{i=1}^{m}(x_i-\bar{x})^2 cov(x,x)=D(x)=m1i=1m(xixˉ)2(协方差矩阵中的 x i x_i xi 表示已经中心化后的值),协方差矩阵是一个对称的矩阵,且对角线元素是各个特征(一列即为一个特征)的方差

协方差矩阵的计算(三维)
C = ( C o v ( x , x ) C o v ( x , y ) C o v ( x , z ) C o v ( y , x ) C o v ( y , y ) C o v ( y , z ) C o v ( z , x ) C o v ( z , y ) C o v ( z , z ) ) C=\begin{pmatrix} Cov(x,x)&Cov(x,y)&Cov(x,z) \\ Cov(y,x)&Cov(y,y)&Cov(y,z) \\ Cov(z,x)&Cov(z,y)&Cov(z,z) \end{pmatrix} C= Cov(x,x)Cov(y,x)Cov(z,x)Cov(x,y)Cov(y,y)Cov(z,y)Cov(x,z)Cov(y,z)Cov(z,z)


举例说明
下面共5个样本,每个样本两个特征,第一列的均值为2.2,第二列的均值为3.8。
在这里插入图片描述

  1. 数据中心化(每列的每个值都减去该列的均值)
    在这里插入图片描述

  2. 计算协方差矩阵
    C = [ 1.7 1.05 1.05 5.7 ] C=\begin{bmatrix} 1.7&1.05 \\ 1.05&5.7 \end{bmatrix} C=[1.71.051.055.7]

  3. 计算特征值与特征向量
    e i g e n v a l u e s = [ 1.4411286 , 5.9588714 ] eigenvalues=[1.4411286,5.9588714] eigenvalues=[1.4411286,5.9588714]
    e i g e n v e c t o r s = [ − 0.97092685 − 0.23937637 0.23937637 − 0.97092685 ] eigenvectors=\begin{bmatrix} -0.97092685&-0.23937637\\ 0.23937637&-0.97092685 \end{bmatrix} eigenvectors=[0.970926850.239376370.239376370.97092685]

  4. 选择最大的一个特征值(将数据降为一维)5.9588714,对应的特征向量为
    [ − 0.23937637 − 0.97092685 ] \begin{bmatrix} -0.23937637\\ -0.97092685 \end{bmatrix} [0.239376370.97092685]

  5. 将中心化后的数据投影到特征矩阵
    [ − 1.2 − 1.8 − 0.2 0.2 − 1.2 1.2 0.8 − 2.8 1.8 3.2 ] ∗ [ − 0.23937637 − 0.97092685 ] = [ 2.03491998 − 0.1463101 − 0.87786057 2.52709409 − 3.5378434 ] \begin{bmatrix} -1.2&-1.8 \\ -0.2&0.2 \\ -1.2&1.2 \\ 0.8&-2.8 \\ 1.8&3.2 \end{bmatrix}*\begin{bmatrix} -0.23937637\\ -0.97092685 \end{bmatrix}=\begin{bmatrix} 2.03491998\\ -0.1463101\\ -0.87786057\\ 2.52709409\\ -3.5378434 \end{bmatrix} 1.20.21.20.81.81.80.21.22.83.2 [0.239376370.97092685]= 2.034919980.14631010.877860572.527094093.5378434
    [ 2.03491998 − 0.1463101 − 0.87786057 2.52709409 − 3.5378434 ] \begin{bmatrix} 2.03491998\\ -0.1463101\\ -0.87786057\\ 2.52709409\\ -3.5378434 \end{bmatrix} 2.034919980.14631010.877860572.527094093.5378434 即为降维后的数据。

3. 代码实践

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_matrix
import numpy as np
import matplotlib.pyplot as plt# 载入手写体数据集并切分为训练集和测试集
digits = load_digits()
x_data = digits.data 
y_data = digits.target 
x_train, x_test, y_train, y_test = train_test_split(x_data,y_data)
x_data.shape 

运行结果

(1797, 64)
# 创建神经网络模型,包含两个隐藏层,每个隐藏层的神经元数量分别为
# 100和50,最大迭代次数为500
mlp = MLPClassifier(hidden_layer_sizes=(100,50) ,max_iter=500)
mlp.fit(x_train,y_train)
# 数据中心化
def zeroMean(dataMat):# 按列求平均,即各个特征的平均meanVal = np.mean(dataMat, axis=0) newData = dataMat - meanValreturn newData, meanVal# PCA降维,top表示要将数据降维到几维
def pca(dataMat,top):# 数据中心化newData,meanVal=zeroMean(dataMat) # np.cov用于求协方差矩阵,参数rowvar=0说明数据一行代表一个样本covMat = np.cov(newData, rowvar=0)# np.linalg.eig求矩阵的特征值和特征向量eigVals, eigVects = np.linalg.eig(np.mat(covMat))# 对特征值从小到大排序eigValIndice = np.argsort(eigVals)# 从eigValIndice中提取倒数top个索引,并按照从大到小的顺序返回一个切片列表# 后一个 -1 表示切片的方向为从后往前,以负的步长(-1)进行迭代n_eigValIndice = eigValIndice[-1:-(top+1):-1]# 最大的n个特征值对应的特征向量n_eigVect = eigVects[:,n_eigValIndice]# 低维特征空间的数据lowDDataMat = newData*n_eigVect# 利用低纬度数据来重构数据reconMat = (lowDDataMat*n_eigVect.T) + meanVal# 返回低维特征空间的数据和重构的矩阵return lowDDataMat,reconMat 
# 绘制降维后的数据及分类结果,共10个类
lowDDataMat, reconMat = pca(x_data, 2)
predictions = mlp.predict(x_data)
x = np.array(lowDDataMat)[:,0]
y = np.array(lowDDataMat)[:,1]
plt.scatter(x,y,c=y_data)

在这里插入图片描述

# 将数据降为3维
lowDDataMat, reconMat = pca(x_data,3)
# 绘制三维数据及分类结果,共10个类
x = np.array(lowDDataMat)[:,0]
y = np.array(lowDDataMat)[:,1]
z = np.array(lowDDataMat)[:,2]
ax = plt.figure().add_subplot(111, projection = '3d') 
ax.scatter(x, y, z, c = y_data, s = 10) #点为红色三角形 

在这里插入图片描述


  1. 主成分分析(PCA) ↩︎

  2. 主成分分析(PCA)理解 ↩︎

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/216906.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# Onnx PP-Vehicle 车辆分析(包含:车辆检测,识别车型和车辆颜色)

目录 效果 模型信息 mot_ppyoloe_s_36e_ppvehicle.onnx vehicle_attribute_model.onnx 项目 代码 下载 其他 C# Onnx PP-Vehicle 车辆分析(包含:车辆检测,识别车型和车辆颜色) 效果 模型信息 mot_ppyoloe_s_36e_ppvehi…

GPS 定位信息获取(北斗星通 GPS)

GPS 定位信息获取(1) 首先回顾北斗星通 GPS 数据获取(1)~(5) gps_pub.cpp 将接收到的串口数据转化为GPS的经纬度信息gps_path.cpp 将经纬度信息转化为全局坐标系下的XY值,以第一个GPS经纬度为…

webrtc AEC 线性滤波 PBFDAF(均匀分块频域自适应滤波)介绍

计算一个脉冲响应和输入信号的卷积,除了使用原始的时域卷积以外,还有如下方法: FFT卷积的方法:对输入信号(长度M)和脉冲响应(长度N)分别补零到K(K>MN-1),…

spring aop核心原理概念

目录 概述aop核心概念解析Target(目标对象)Joinpoint(连接点)Advice(通知/增加)Pointcut(切入点)Aspect(切面)Advisor(通知器)Weaving(织入)Proxy(代理)Introduction(引介) 结束 概述 aop核心概念解析 Target(目标对象) 代理的目标对象 目标对象(Target)的确立,是…

微信公众号对接获取用户openid预约项目心路全历程

公众号对接获取openid全历程 一、背景二、选型三、开始修改若依框架四、自己搭后端框架五、前端框架uni-app修改六、对接获取公众号登录用户openId七、总结 一、背景 老板接了朋友的一个公众号需求,要求做一个简单的疫苗预约系统。功能是获取当前登录用户&#xff0…

系列十五、BeanDefinition

一、BeanDefinition 1.1、概述 BeanDefinition是一个接口,主要负责存储bean的定义信息,决定bean的生产方式,类似于说明书。后续BeanFactory就可以根据这些信息生产bean了。比如实例化:可以通过反射得到实例对象;比如&…

【版本管理 | Git 】Git最佳实践系列(一) —— LFS .gitignore 最佳实践,确定不来看看?

🤵‍♂️ 个人主页: AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!&…

【腾讯云云上实验室-向量数据库】用向量数据库——实现高效文本检索功能

文章目录 前言Tencent Cloud VectorDB 简介Tencent Cloud VectorDB 使用实战申请腾讯云向量数据库腾讯云向量数据库使用步骤腾讯云向量数据库实现文本检索 结论和建议 前言 想必各位开发者一定使用过关系型数据库MySQL去存储我们的项目的数据,也有部分人使用过非关…

Kafka配置SASL认证密码登录

​​​​​​1、修改config/server.properties,添加如下内容 listenersSASL_PLAINTEXT://内网ip:9092 advertised.listenersSASL_PLAINTEXT://外网ip:9092 security.inter.broker.protocolSASL_PLAINTEXT sasl.mechanism.inter.broker.protocolPLAIN sasl.enabled.…

Vue解析器

解析器本质上是一个状态机。但我们也曾提到,正则表达式其实也是一个状态机。因此在编写 parser 的时候,利用正则表达式能够让我们少写不少代码。本章我们将更多地利用正则表达式来实现 HTML 解析器。另外,一个完善的 HTML 解析器远比想象的要…

高性能Mysql第三版学习(一)

学习目标: 高性能Mysql第3版 学习内容: MySQL架构与历史Mysql基座测试服务器性能Schema与数据类型优化创建高性能的索引查询性能优化Mysql高级特性Explain 学习时间: 周一至周五晚上 9点—晚上10点周六晚上9点-10点周日晚上9 点-10点 学习…

鸿蒙开发-ArkTS 语言-基础语法

1. 初识 ArkTS 语言 ArkTS 是 HarmonyOS 优选主力开发语言。ArkTS 是基于 TypeScript (TS) 扩展的一门语言,继承了 TS 的所有特性,是TS的超集。 主要是扩展了以下几个方面: 声明式UI描述和自定义组件: ArkTS使用声明式的方式描述用…