机器学习与因果推断的高级实践 | 数学建模

文章目录

  • 因果推断
  • 因果推断的前世今生
    • (1)潜在结果框架(Potential Outcome Framework)
    • (2)结构因果模型(Structual Causal Model,SCM)

身处人工智能爆发式增长时代的机器学习从业者无疑是幸运的,人工智能如何更好地融入人类生活的方方面面是这个时代要解决的重要问题。滴滴国际化资深算法工程师王聪颖老师发现,很多新人在入行伊始,往往把高大上的模型理论背得滚瓜烂熟,而在真正应用时却摸不清门路、抓不住重点,导致好钢没用到刀刃上,无法取得实际的业务收益。如果能有一本指导新人从入门到精通、从理论到实践的技术书籍,那该多好,这样不仅省去了企业培养新人的成本,也留给了新人自我学习成长的空间。

本着这个初心,王老师花了将近一年的业余时间来复盘总结了自己以及身边同事从小白成长为独当一面的合格算法工程师的成长历程和项目经验,最终以理论结合实践的方式写入《机器学习高级实践:计算广告、供需预测、智能营销、动态定价》这本书中,希望能通过他的经验,真正地帮助到对机器学习算法感兴趣的读者。请添加图片描述

《机器学习高级实践:计算广告、供需预测、智能营销、动态定价》作者:王聪颖  谢志辉

因果推断

在这里插入图片描述
因果推断是近年来机器学习领域新兴的一个分支,它主要解决“先有鸡还是先有蛋”的问题。因此,因果推断和关联关系最主要的区别是:因果推断是试图通过变量X的变化推断其对结果Y带来的影响有多少,而关联关系则侧重于表达变量之间的趋势变化,如两个变量图片之间有相关性关系,如果图片随着图片的递增而递增,则说明图片和图片正相关,如果图片随着图片递增而下降,则说明两者负相关。因此因果性(Causality)和相关性(Correlation)有着本质的不同,为了帮助读者更好地理解,这里举个例子:
某研究表明,吃早饭的人比不吃早饭的人体重更轻,因此“专家”得出结论——吃早饭可以减肥。但事实上,吃早饭和体重轻很有可能只是相关性关系,而并非因果关系。吃早饭的人可能是因为三餐规律、经常锻炼、睡眠充足等等一系列健康的生活方式,最终导致了他们的体重更轻。图1所示为因果推断中的混杂因子,描述了健康的生活方式、吃早饭、体重轻三者的关系。
请添加图片描述
很显然,拥有健康的生活方式的人会吃早餐,健康生活方式同时也会导致体重轻,可见健康的生活方式是吃早餐和体重轻的共同原因。正是因为有这样的共同原因存在,导致我们不能轻易地得出吃早餐和体重轻之间存在因果关系,所以我们认为“专家”的结论是草率的。吃早餐和减肥之间只存在相关性,不存在因果性,并把这种阻断因果关系推断的共同原因称之为混杂因子。那么如图1右所示,消除混杂因子,寻找两个变量之间的因果关系,并量化出来某种自变量X的改变,影响了因变量Y的改变程度是因果推断主要探讨的内容。

因果推断的前世今生

在这里插入图片描述

(1)潜在结果框架(Potential Outcome Framework)

在介绍潜在结果框架之前,先列出两个需要声明的假设来描述个体因果效应,另外需要注意的是为了更快的帮助大家入门,本文只描述二元处理,即个体只有接受处理和不接受处理两种情况,并对应两种处理方式的结果。
请添加图片描述
但是在现实世界中,个体图片在同一时刻要么接受处理,要么不接受处理,不可能同时既接受处理又不接受处理,因此个体因果作用是不可识别的,个体的观测数据结果图片

在已知个体因果作用无法识别的情况下,如何进行因果推断呢?或许把因果作用的识别从个体转移到了总体身上是个行之有效的解决方案,于是便有了平均因果作用(ATE,
Average Treatment
Effect)的概念。平均因果作用不再比较个体的因果作用,而是比较两组群体在不同的处理下的潜在结果,这两组群体除了接受的处理不同之外,必须具有同质的属性,这样计算出的平均因果作用才能无偏,随机对照实验(Random
controlled Trial,RCT)是保证两组群里无偏性的基本实验方法。把全量数据随机分为实验组(Treatment
Group)和对照组(Control
Group),其中实验组的T=1,对照组的T=0,那么平均因果作用的公式如下:请添加图片描述

其中Y(1)和Y(0)分别是接受处理情况下实验组的结果和不接受处理情况下对照组的结果。至此,潜在结果框架下做因果推断的基本理论知识已经讲解完毕,归纳起来主要有以下两点。
1)随机对照试验保证组别的同质性。

2)从不可评估的个体因果作用转移向评估总体的平均因果效应。

(2)结构因果模型(Structual Causal Model,SCM)

有向无环图是由节点和有向边组成的,有向边的上游是父节点,有向边指向的方向是子节点。在DAG中的某个节点的父节点与其非子节点都独立,根据全概率公式和条件独立性,一个有向无环图中的所有节点的联合概率分布可以表达为:
在这里插入图片描述
其中图片是所有指向图片的父节点,为了更好地帮助读者理解有向无环图中的联合分布表达,这里给出一个具体的DAG实例,如图2所示。请添加图片描述
根据有向无环图的条件独立性和联合概率分布的公式,图2的联合分布可以表达为:请添加图片描述
每一个有向无环图产出了唯一的联合分布,但是一个联合分布不一定只对应着一个有向无环图,比如图片的联合概率分布有可能是图片,也可能是图结构图片,而两种图结构的因果关系完全相反,这也正是贝叶斯网络不适合做因果模型的原因。为了把DAG改造成可以表达因果关系的因果图,需要引入do算子。这里的do算子就表达的是一种干预,图片表示将指向节点图片的有向边全部切除掉,并且节点图片赋值为常数,在do算子干预后,DAG的联合概率分布有了变化,表达为如下的形式:请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

在图3的链式、叉式、反叉式三种路径结构中,反叉式结构中的A、C天然相互独立,B又被称为对撞子,链式或者叉式结构,以B为条件可以阻断A和C之间的关联关系,从而实现A、C相互独立。d-分离就是为了达到变量独立的目的,而对不同的路径结构采取的阻断的操作,具体的d-分离法则归纳起来如下。
1)当某条路径上有两个箭头同时指向某个变量时,那这个变量称之为对撞子,并且这条路径被对撞子阻断。
2)如果某条路径含有非对撞子,那么当以非对撞子为条件时,这条路径可以被阻断。
3)当某条路径以对撞子为条件时,这条路径不仅不会被阻断,反而会被打开。

这里需要注意的是,以某个变量为条件指的是指定某个变量的值,比如以年龄这个变量为条件,就是指定年龄为0或者1。
在了解d-分离法则是可以通过以某个变量为条件进行阻断,从而实现变量间的独立之后,便可以结合后门准则消除混杂因子对未知结构的因果图进行因果推断了。在弄清楚后门准则之前,需要了解后门路径、前门路径的概念。从变量X到变量Y的后门路径就是连接X到Y,但是箭头不从X出发的路径,与之相应的前门路径是连接X到Y且箭头从X出发的路径,后门准则的定义是可以通过d-分离阻断X和Y之间所有的后门路径,那么我们认为可以识别从X到Y之间的因果关系,并把阻断后门路径的因子称之为混杂因子。至此,知道了后门准则的方法无须观测到所有的变量,只需要观测到以哪个变量为条件可以消除后门路径,从而使得X到Y之间的因果关系可识别。
在这里插入图片描述
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/217001.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机编程零基础编程学什么语言,中文编程工具构件简介软件下载

计算机编程零基础编程学什么语言,中文编程工具构件简介软件下载 给大家分享一款中文编程工具,零基础轻松学编程,不需英语基础,编程工具可下载。 这款工具不但可以连接部分硬件,而且可以开发大型的软件,象如…

哨兵1号回波数据(L0级)包格式解析与成像参数提取

坑爹的格式,具体有多坑往下看就知道了。matlab代码在文末。 先上首字母缩写: 再来回波数据包的格式图 1. 数据包格式 众所周知,解包的第一步是找帧头和帧长,找到第4~5字节,帧长码为“0x3761”,转十进制为14777,然而实际第一帧整帧的长度是14184。。。你要是加6我还能…

网络和Linux网络_5(应用层)HTTP协议(方法+报头+状态码)

目录 1. HTTP协议介绍 1.1 URL介绍 1.2 urlencode和urldecode 1.3 HTTP协议格式 1.4 HTTP的方法和报头和状态码 2. 代码验证HTTP协议格式 HttpServer.hpp 2.2 html正式测试 Util.hpp index.html 2.3 再看HTTP方法和报头和状态码 2.3.1 方法_GET和POST等 2.3.2 报头…

京东家用电器商品电子说明书在哪里能找到怎么查看产品电子说明书?草柴返利APP如何查询领取京东优惠券拿京东购物返利?

京东商品电子说明书是一种便捷、高效的说明工具,为消费者了解和使用商品提供了重要帮助。京东商品电子说明书是一种以电子文档、图文、视频的形式提供的商品使用说明书。它通常由商家上传至京东平台,以供消费者在购买商品后下载查看。与传统的纸质说明书…

frp V0.52.3 搭建

下载 https://github.com/fatedier/frp/releases/ 此版本暂时没有windows的,想在windows使用请下载v0.52.2 简易搭建 frps.toml的配置文件,以下12000、8500需要在云服务器中的防火墙中开放tcp # bindPort为frps和frpc通信的端口,需要在防…

Linux的gcc,gdb基础

执行详解: 1)如何执行 路径可执行文件名 或者 路径可执行文件名 & (将进程放到后台执行); 可以把可执行文件放到 /usr/bin 就可以省略路径了; 思考:为什么? ps :/usr/bin ps,ls,pwd (先了解,后期写项目就知道为什么了) 2)两步执行与一步执行 a.可以三步合为一步,即…

死磕Nacos系列:Nacos在我的SpringCloud项目中做了什么?

Nacos服务注册 我们一个SpringCloud项目中集成了Nacos,当项目启动成功后,就可以在Nacos管理界面上看到我们项目的注册信息,还可以看到项目的健康状态等等信息: 那Nacos是什么时候进行了哪些操作的呢?今天我们来一探究…

【ArcGIS Pro微课1000例】0035:栅格影像拼接(dem高程数据)

本实验讲解在ArcGIS Pro中,栅格数据的两种拼接(镶嵌)方法,适用于遥感影像、DOM、DEM、DSM等常见栅格数据。 文章目录 一、加载实验数据二、栅格拼接工具1. 镶嵌2. 镶嵌至新栅格三、注意事项四、拓展阅读一、加载实验数据 加载配套实验数据中的0035.rar中的两个dem数据,如…

RabbitMq使用与整合

MQ基本概念 MQ概述 MQ全称 Message Queue([kjuː])(消息队列),是在消息的传输过程中保存消息的容器。多用于分布式系统之间进行通信。 (队列是一种容器,用于存放数据的都是容器,存…

Redis集群(新)

1.什么是集群 Redis集群实现了对Redis的水平扩容,可实现并发写操作,启动n个redis节点,将数据分别存储在不同的节点中,每块节点负责不同区域的插槽,所以Redis集群通过分区来提供一定程度的可用性。 Redis集群现采用的是…

2023 年 认证杯 小美赛 ABC题 国际大学生数学建模挑战赛 |数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。 cs数模团队在认证杯 小美赛前为大家提供了许多资料的内容呀&am…

leetcode刷题详解二

160. 相交链表 本质上是走过自己的路,再走过对方的路,这是求两个链表相交的方法 ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {//本质上是走过自己的路,再走过对方的路if(headA NULL|| headB NULL){return NULL;}Lis…